977 resultados para design for dynamics
Resumo:
Potentiometric sensors are typically unable to carry out on-site monitoring of environmental drug contaminants because of their high limits of detection (LODs). Designing a novel ligand material for the target analyte and managing the composition of the internal reference solution have been the strategies employed here to produce for the first time a potentiometric-based direct reading method for an environmental drug contaminant. This concept has been applied to sulfamethoxazole (SMX), one of the many antibiotics used in aquaculture practices that may occur in environmental waters. The novel ligand has been produced by imprinting SMX on the surface of graphitic carbon nanostructures (CN) < 500 nm. The imprinted carbon nanostructures (ICN) were dispersed in plasticizer and entrapped in a PVC matrix that included (or not) a small amount of a lipophilic additive. The membrane composition was optimized on solid-contact electrodes, allowing near-Nernstian responses down to 5.2 μg/mL and detecting 1.6 μg/mL. The membranes offered good selectivity against most of the ionic compounds in environmental water. The best membrane cocktail was applied on the smaller end of a 1000 μL micropipette tip made of polypropylene. The tip was then filled with inner reference solution containing SMX and chlorate (as interfering compound). The corresponding concentrations were studied for 1 × 10−5 to 1 × 10−10 and 1 × 10−3 to 1 × 10−8 mol/L. The best condition allowed the detection of 5.92 ng/L (or 2.3 × 10−8 mol/L) SMX for a sub-Nernstian slope of −40.3 mV/decade from 5.0 × 10−8 to 2.4 × 10−5 mol/L.
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
We propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.
Resumo:
This paper studies the dynamics of the Rayleigh piston using the modeling tools of Fractional Calculus. Several numerical experiments examine the effect of distinct values of the parameters. The time responses are transformed into the Fourier domain and approximated by means of power law approximations. The description reveals characteristics usual in Fractional Brownian phenomena.
Resumo:
International Lifesaving Congress 2007, La Coruna, Spain, December, 2007
Resumo:
The design of an Autonomous Surface Vehicle for operation in river and estuarine scenarios is presented. Multiple operations with autonomous underwater vehicles and support to AUV missions are one of the main design goals in the ROAZ system. The mechanical design issues are discussed. Hardware, software and implementation status are described along with the control and navigation system architecture. Some preliminary test results concerning a custom developed thruster are presented along with hydrodynamic drag calculations by the use of computer fluid dynamic methods.
Resumo:
Proceedings of the 10th Mediterranean Conference on Control and Automation - MED2002 Lisbon, Portugal, July 9-12, 2002
Resumo:
This paper reports the design of a new remotely operated underwater vehicle (ROV), which has been developed at the Underwater Systems and Technology Laboratory (USTL) - University of Porto. This design is contextualized on the KOS project (Kits for underwater operations). The main issues addressed here concern directional drag minimization, symmetry, optimized thruster positioning, stability and layout of ROV components. This design is aimed at optimizing ROV performance for a set of different operational scenarios. This is achieved through modular configurations which are optimized for each different scenario.
Resumo:
Proceedings of the 10th Conference on Dynamical Systems Theory and Applications
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades due to the progress in the area of nonlinear dynamics. This article discusses several applications of fractional calculus in science and engineering, namely: the control of heat systems, the tuning of PID controllers based on fractional calculus concepts and the dynamics in hexapod locomotion.
Resumo:
This paper analyses the performance of a genetic algorithm (GA) in the synthesis of digital circuits using two novel approaches. The first concept consists in improving the static fitness function by including a discontinuity evaluation. The measure of variability in the error of the Boolean table has similarities with the function continuity issue in classical calculus. The second concept extends the static fitness by introducing a fractional-order dynamical evaluation.
Resumo:
First IFAC Workshop on Fractional Differentiation and Its Application - 19-21 July 2004, Enseirb, Bordeaux, France - FDA'04