991 resultados para density functional
Resumo:
By combining density functional theory calculation and microkinetic analysis, NO oxidation on the platinum group metal oxides (PtO(2), IrO(2), OsO(2)) is investigated, aiming at shedding light on the activities of metal oxides and exploring the activity variations of metal oxides compared to their corresponding metals. A microkinetic model, taking into account the possible low diffusion of surface species on metal oxide surfaces, is proposed for NO oxidation. The resultant turnover frequencies of NO oxidation show that under the typical experimental condition, T = 600 K, p(O2) = 0.1 atm, p(NO) = 3 x 10(-4) atm, p(NO2) = 1.7 x 10(-4) atm; (i) IrO(2)(110) exhibits higher activity than PtO(2)(110) and OsO(2)(110), and (ii) compared to the corresponding metallic Pt, Ir, and Os, the activity of PtO(2) to catalyze NO oxidation is lower, but interestingly IrO(2) and OsO(2) exhibit higher activities. The reasons for the activity differences between the metals and oxides are addressed. Moreover, other possible reaction pathways of NO oxidation on PtO(2)(110), involving O(2) molecule (NO + O(2) -> OONO) and lattice bridge-O(2c), are also found to give low activities. The origin of the Pt catalyst deactivation is also discussed.
Resumo:
Transition metals are often introduced to a catalyst as promoters to improve catalytic performance. In this work, we study the promotion effect of transition metals on Co, the preferred catalytic metal for Fischer-Tropsch synthesis because of its good compromise of activity, selectivity and stability, for ethylene chemisorption using density functional theory (DFT) calculations, aiming to provide some insight into improving the alpha-olefin selectivity. In order to obtain the general trend of influence on ethylene chemisorption, twelve transition metals (Zr, Mn, Re, Ru, Rh, It, Ni, Pd, Pt, Cu, Ag and Au) are calculated. We find that the late transition metals (e.g. Pd and Cu) can decrease ethylene chemisorption energy. These results suggest that the addition of the late transition metals may improve alpha-olefin selectivity. Electronic structure analyses (both charge density distributions and density of states) are also performed and the understanding of calculated results is presented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The crucial roles of the coverage of surface free sites in determining catalytic activity trend are quantitatively addressed with the help of density functional theory and microkinetics. First, by analyzing activity trends of NO oxidation catalyzed by Ru, Rh, Pd, Os, Ir, and Pt surfaces with full kinetic considerations, we identify that the activity trend is in general determined by the competition between the reaction barrier and the coverage of surface free sites. Second, since the dissociation of many important molecules, such as the dissociation of N(2), O(2), and CO, follows the same Bronsted-Evans-Polanyi relationship, the coverage of surface free sites is usually a decisive term that affects the overall activity. Third, an equation is derived for the coverage of surface free sites and it is found that the coverage of surface free sites contains not only all the key thermodynamic parameters but also all the kinetic properties in the catalytic system. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3140202]
Resumo:
Using density functional theory with the inclusion of on-site Coulomb Correction, the O vacancy formation energies of CexZr1-xO2 solid solutions with a series of Ce/Zr ratios are calculated, and a model to understand the results is proposed. It consists of electrostatic and structural relaxation terms, and the latter is found to play a vital role in affecting the O vacancy formation energies. Using this model, several long-standing questions in the field, such as why ceria with 50% ZrO2 usually exhibit the best oxygen storage capacity, can be explained. Some implications of the new interpretation are also discussed.
Resumo:
Density-functional theory calculations have been carried out to systematically study single surface oxygen vacancies on CeO2(111). It is surprisingly found that multiple structures with the two excess electrons localized at different positions can exist. We show that the origin of the multiconfigurations of 4f electrons is a result of geometric relaxation on the surface and strong localization characteristic of 4f electrons in ceria. The importance of 4f electron structures is also presented and discussed. These results may possess implications for our understanding of materials with f electrons.
Resumo:
Reduced TiO2 (110) surfaces usually have OH groups as a result of H2O dissociation at oxygen vacancy defects. Because of excess electrons due to OH adsorption, OH/TiO2. exhibit interesting properties favorable to further O-2 or H2O adsorption. Both O-2 and H2O can adsorb and easily diffuse on the OH/TiO2 surface; such behavior plays a significant role in photocatalysis, heterogeneous catalysis, electronic devices and sensors. Indeed, the processes of H2O dissociation, O-2 and H2O diffusion on Such TiO2 surfaces, in the presence of OH groups, are important issues in their own right. Herein, the most recent experimental and theoretical progresses in understanding the interactions between adsorbed OH groups and O-2, or H2O, over TiO2 (110) surfaces and their implications will be reviewed. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Structures and catalytic activities of Au thin films supported at anatase TiO(2)(101)) and a Au substrate are studied by using density functional theory calculations. The results show that O(2) can hardly adsorb at flat and stepped Au thin films, even supported by fully reduced TiO(2)(101) that can highly disperse Au atoms and offer strong electronic promotion. Interestingly, in both oxide-supported and pure Au. systems, wire-structured Au can adsorb both CO and O(2) rather strongly, and kinetic analysis suggests its high catalytic activity for low-temperature CO oxidation. The d-band center of Au at the catalytic site is determined to account for the unusual activity of the wire-structured film. A generalized structural model based on the wire-structured film is proposed for active Au, and possible support effects are discussed: Selected oxide surfaces can disperse Au atoms and stabilize the formation of a filmlike structure; they may also serve as a template for the preferential arrangement of Au atoms in a wire structure under low Au coverage.
Resumo:
Hydrogenation reactions at transition metal surfaces comprise a key set of reactions in heterogeneous catalysis. In this paper, density functional theory methods are employed to take an in-depth look at this fundamental reaction type. The energetics of hydrogenation of atomic C, N, and O have been studied in some detail over low index Zr, Nb, Mo, Tc, Ru, Rh, and Pd surfaces. Detailed bonding analysis has also been employed to track carefully the chemical changes taking place during reaction. A number of interesting horizontal and vertical trends have been uncovered relating to reactant valency and metal d-band filling. A general correlation has also been found between the reaction barriers and the reaction potential energies. Moreover, when each reaction is considered independently, correlation has been found to improve with decreasing reactant valency. Bonding analysis has pointed to this being related to the relative position of the transition state along the reaction coordinate and has shown that as reactant valency decreases, the transition states become progressively later.
Resumo:
The energetics of the low-temperature adsorption and decomposition of nitrous oxide, N(2)O, on flat and stepped platinum surfaces were calculated using density-functional theory (DFT). The results show that the preferred adsorption site for N(2)O is an atop site, bound upright via the terminal nitrogen. The molecule is only weakly chemisorbed to the platinum surface. The decomposition barriers on flat (I 11) surfaces and stepped (211) surfaces are similar. While the barrier for N(2)O dissociation is relatively small, the surface rapidly becomes poisoned by adsorbed oxygen. These findings are supported by experimental results of pulsed N(2)O decomposition with 5% Pt/SiO(2) and bismuth-modified Pt/C catalysts. At low temperature, decomposition occurs but self-poisoning by O((ads)) prevents further decomposition. At higher temperatures some desorption Of O(2) is observed, allowing continued catalytic activity. The study with bismuth-modified Pt/C catalysts showed that, although the activation barriers calculated for both terraces and steps were similar, the actual rate was different for the two surfaces. Steps were found experimentally to be more active than terraces and this is attributed to differences in the preexponential term. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Density functional theory with gradient corrections and spin polarization has been used to study the dehydrogenation of CH3 on Ni(111), a crucial step in many important catalytic reactions. The reaction, CH3(ads)--> CH2(ads)+H-(ads), is about 0.5 eV endothermic with an activation energy of more than 1 eV. The overall reaction pathway is rather intriguing. The C moiety translates from a hcp to a fcc site during the course of the reaction. The transition state of the reaction has been identified. The CH3 species is highly distorted, and both C and the active H are centered nearly on top of a row of Ni atoms with a long C-H bond length of 1.80 Angstrom. The local density of states coupled with examination of the real space distribution of individual quantum states has been used to analyze the reaction pathway. (C) 2000 American Institute of Physics. [S0021-9606(00)30218-5].
Resumo:
In the catalytic hydrogenation of hydrocarbons, subsurface hydrogen is known experimentally to be much more reactive than surface hydrogen. We use density functional theory to identify low-energy pathways for the hydrogenation of methyl adsorbed on Ni(111) by surface and subsurface hydrogen. The metastability of subsurface hydrogen with respect to chemisorbed hydrogen is mainly responsible for the low activation barrier for subsurface reactions. (C) 1999 American Institute of Physics.
Resumo:
The ground state potential energy surface for CO chemisorption across Pd{110} has been calculated using density functional theory with gradient corrections at monolayer coverage. The most stable site corresponds well with the experimental adsorption heat, and it is found that the strength of binding to sites is in the following order: pseudo-short-bridge>atop>long-bridge>hollow. Pathways and transition states for CO surface diffusion, involving a correlation between translation and orientation, are proposed and discussed. (C) 1997 American Institute of Physics.
Site symmetry dependence of repulsive interactions between chemisorbed oxygen atoms on Pt{100}-(1x1)
Resumo:
Ab initio total energy calculations using density functional theory with the generalized gradient approximation have been performed for the chemisorption of oxygen atoms on a Pt{100}-(1 x 1) slab. Binding energies for the adsorption of oxygen on different high-symmetry sites are presented. The bridge site is the most stable at a coverage of 0.5 ML, followed by the fourfold hollow site. The atop site is the least stable. This finding is rationalized by analyzing the ''local structures'' formed upon oxygen chemisorption. The binding energies and heats of adsorption at different oxygen coverages show that pairwise repulsive interactions are considerably stronger between oxygen atoms occupying fourfold sites than those occupying bridge sites. Analysis of the partial charge densities associated with Bloch states demonstrates that the O-Pt bond is considerably more localized at the bridge site. These effects cause a sharp drop in the heats of adsorption for oxygen on hollow sites when the coverage is increased from 0.25 to 0.5 ML. Mixing between oxygen p orbitals and Pt d orbitals can be observed over the whole metal d-band energy range.
Resumo:
The chemisorption of CO on metal surfaces is widely accepted as a model for understanding chemical bonding between molecules and solid surfaces, but is nevertheless still a controversial subject. Ab initio total energy calculations using density functional theory with gradient corrections for CO chemisorption on an extended Pd{110} slab yield good agreement with experimental adsorption energies. Examination of the spatial distribution of individual Bloch states demonstrates that the conventional model for CO chemisorption involving charge donation from CO 5 sigma states to metal states and back-donation from metal states into CO 2 pi states is too simplistic, but the computational results provide direct insight into the chemical bonding within the framework of orbital mixing (or hybridisation). The results provide a sound basis for understanding the bonding between molecules and metal surfaces.