988 resultados para data stratification
Resumo:
With growing population and fast urbanization in Australia, it is a challenging task to maintain our water quality. It is essential to develop an appropriate statistical methodology in analyzing water quality data in order to draw valid conclusions and hence provide useful advices in water management. This paper is to develop robust rank-based procedures for analyzing nonnormally distributed data collected over time at different sites. To take account of temporal correlations of the observations within sites, we consider the optimally combined estimating functions proposed by Wang and Zhu (Biometrika, 93:459-464, 2006) which leads to more efficient parameter estimation. Furthermore, we apply the induced smoothing method to reduce the computational burden. Smoothing leads to easy calculation of the parameter estimates and their variance-covariance matrix. Analysis of water quality data from Total Iron and Total Cyanophytes shows the differences between the traditional generalized linear mixed models and rank regression models. Our analysis also demonstrates the advantages of the rank regression models for analyzing nonnormal data.
Resumo:
Environmental data usually include measurements, such as water quality data, which fall below detection limits, because of limitations of the instruments or of certain analytical methods used. The fact that some responses are not detected needs to be properly taken into account in statistical analysis of such data. However, it is well-known that it is challenging to analyze a data set with detection limits, and we often have to rely on the traditional parametric methods or simple imputation methods. Distributional assumptions can lead to biased inference and justification of distributions is often not possible when the data are correlated and there is a large proportion of data below detection limits. The extent of bias is usually unknown. To draw valid conclusions and hence provide useful advice for environmental management authorities, it is essential to develop and apply an appropriate statistical methodology. This paper proposes rank-based procedures for analyzing non-normally distributed data collected at different sites over a period of time in the presence of multiple detection limits. To take account of temporal correlations within each site, we propose an optimal linear combination of estimating functions and apply the induced smoothing method to reduce the computational burden. Finally, we apply the proposed method to the water quality data collected at Susquehanna River Basin in United States of America, which dearly demonstrates the advantages of the rank regression models.
Resumo:
A modeling paradigm is proposed for covariate, variance and working correlation structure selection for longitudinal data analysis. Appropriate selection of covariates is pertinent to correct variance modeling and selecting the appropriate covariates and variance function is vital to correlation structure selection. This leads to a stepwise model selection procedure that deploys a combination of different model selection criteria. Although these criteria find a common theoretical root based on approximating the Kullback-Leibler distance, they are designed to address different aspects of model selection and have different merits and limitations. For example, the extended quasi-likelihood information criterion (EQIC) with a covariance penalty performs well for covariate selection even when the working variance function is misspecified, but EQIC contains little information on correlation structures. The proposed model selection strategies are outlined and a Monte Carlo assessment of their finite sample properties is reported. Two longitudinal studies are used for illustration.
Resumo:
We consider rank regression for clustered data analysis and investigate the induced smoothing method for obtaining the asymptotic covariance matrices of the parameter estimators. We prove that the induced estimating functions are asymptotically unbiased and the resulting estimators are strongly consistent and asymptotically normal. The induced smoothing approach provides an effective way for obtaining asymptotic covariance matrices for between- and within-cluster estimators and for a combined estimator to take account of within-cluster correlations. We also carry out extensive simulation studies to assess the performance of different estimators. The proposed methodology is substantially Much faster in computation and more stable in numerical results than the existing methods. We apply the proposed methodology to a dataset from a randomized clinical trial.
Resumo:
Power calculation and sample size determination are critical in designing environmental monitoring programs. The traditional approach based on comparing the mean values may become statistically inappropriate and even invalid when substantial proportions of the response values are below the detection limits or censored because strong distributional assumptions have to be made on the censored observations when implementing the traditional procedures. In this paper, we propose a quantile methodology that is robust to outliers and can also handle data with a substantial proportion of below-detection-limit observations without the need of imputing the censored values. As a demonstration, we applied the methods to a nutrient monitoring project, which is a part of the Perth Long-Term Ocean Outlet Monitoring Program. In this example, the sample size required by our quantile methodology is, in fact, smaller than that by the traditional t-test, illustrating the merit of our method.
Resumo:
The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.
Resumo:
We consider ranked-based regression models for clustered data analysis. A weighted Wilcoxon rank method is proposed to take account of within-cluster correlations and varying cluster sizes. The asymptotic normality of the resulting estimators is established. A method to estimate covariance of the estimators is also given, which can bypass estimation of the density function. Simulation studies are carried out to compare different estimators for a number of scenarios on the correlation structure, presence/absence of outliers and different correlation values. The proposed methods appear to perform well, in particular, the one incorporating the correlation in the weighting achieves the highest efficiency and robustness against misspecification of correlation structure and outliers. A real example is provided for illustration.
Resumo:
In analysis of longitudinal data, the variance matrix of the parameter estimates is usually estimated by the 'sandwich' method, in which the variance for each subject is estimated by its residual products. We propose smooth bootstrap methods by perturbing the estimating functions to obtain 'bootstrapped' realizations of the parameter estimates for statistical inference. Our extensive simulation studies indicate that the variance estimators by our proposed methods can not only correct the bias of the sandwich estimator but also improve the confidence interval coverage. We applied the proposed method to a data set from a clinical trial of antibiotics for leprosy.
Resumo:
One difficulty in summarising biological survivorship data is that the hazard rates are often neither constant nor increasing with time or decreasing with time in the entire life span. The promising Weibull model does not work here. The paper demonstrates how bath tub shaped quadratic models may be used in such a case. Further, sometimes due to a paucity of data actual lifetimes are not as certainable. It is shown how a concept from queuing theory namely first in first out (FIFO) can be profitably used here. Another nonstandard situation considered is one in which lifespan of the individual entity is too long compared to duration of the experiment. This situation is dealt with, by using ancilliary information. In each case the methodology is illustrated with numerical examples.
Resumo:
This paper considers the one-sample sign test for data obtained from general ranked set sampling when the number of observations for each rank are not necessarily the same, and proposes a weighted sign test because observations with different ranks are not identically distributed. The optimal weight for each observation is distribution free and only depends on its associated rank. It is shown analytically that (1) the weighted version always improves the Pitman efficiency for all distributions; and (2) the optimal design is to select the median from each ranked set.
Resumo:
We consider the analysis of longitudinal data when the covariance function is modeled by additional parameters to the mean parameters. In general, inconsistent estimators of the covariance (variance/correlation) parameters will be produced when the "working" correlation matrix is misspecified, which may result in great loss of efficiency of the mean parameter estimators (albeit the consistency is preserved). We consider using different "Working" correlation models for the variance and the mean parameters. In particular, we find that an independence working model should be used for estimating the variance parameters to ensure their consistency in case the correlation structure is misspecified. The designated "working" correlation matrices should be used for estimating the mean and the correlation parameters to attain high efficiency for estimating the mean parameters. Simulation studies indicate that the proposed algorithm performs very well. We also applied different estimation procedures to a data set from a clinical trial for illustration.
Resumo:
The Fabens method is commonly used to estimate growth parameters k and l infinity in the von Bertalanffy model from tag-recapture data. However, the Fabens method of estimation has an inherent bias when individual growth is variable. This paper presents an asymptotically unbiassed method using a maximum likelihood approach that takes account of individual variability in both maximum length and age-at-tagging. It is assumed that each individual's growth follows a von Bertalanffy curve with its own maximum length and age-at-tagging. The parameter k is assumed to be a constant to ensure that the mean growth follows a von Bertalanffy curve and to avoid overparameterization. Our method also makes more efficient use nf thp measurements at tno and recapture and includes diagnostic techniques for checking distributional assumptions. The method is reasonably robust and performs better than the Fabens method when individual growth differs from the von Bertalanffy relationship. When measurement error is negligible, the estimation involves maximizing the profile likelihood of one parameter only. The method is applied to tag-recapture data for the grooved tiger prawn (Penaeus semisulcatus) from the Gulf of Carpentaria, Australia.
Resumo:
The extended recruitment season for short-lived species such as prawns biases the estimation of growth parameters from length-frequency data when conventional methods are used. We propose a simple method for overcoming this bias given a time series of length-frequency data. The difficulties arising from extended recruitment are eliminated by predicting the growth of the succeeding samples and the length increments of the recruits in previous samples. This method requires that some maximum size at recruitment can be specified. The advantages of this multiple length-frequency method are: it is simple to use; it requires only three parameters; no specific distributions need to be assumed; and the actual seasonal recruitment pattern does not have to be specified. We illustrate the new method with length-frequency data on the tiger prawn Penaeus esculentus from the north-western Gulf of Carpentaria, Australia.
Resumo:
We propose a new model for estimating the size of a population from successive catches taken during a removal experiment. The data from these experiments often have excessive variation, known as overdispersion, as compared with that predicted by the multinomial model. The new model allows catchability to vary randomly among samplings, which accounts for overdispersion. When the catchability is assumed to have a beta distribution, the likelihood function, which is refered to as beta-multinomial, is derived, and hence the maximum likelihood estimates can be evaluated. Simulations show that in the presence of extravariation in the data, the confidence intervals have been substantially underestimated in previous models (Leslie-DeLury, Moran) and that the new model provides more reliable confidence intervals. The performance of these methods was also demonstrated using two real data sets: one with overdispersion, from smallmouth bass (Micropterus dolomieu), and the other without overdispersion, from rat (Rattus rattus).
Resumo:
Robust estimation often relies on a dispersion function that is more slowly varying at large values than the square function. However, the choice of tuning constant in dispersion functions may impact the estimation efficiency to a great extent. For a given family of dispersion functions such as the Huber family, we suggest obtaining the "best" tuning constant from the data so that the asymptotic efficiency is maximized. This data-driven approach can automatically adjust the value of the tuning constant to provide the necessary resistance against outliers. Simulation studies show that substantial efficiency can be gained by this data-dependent approach compared with the traditional approach in which the tuning constant is fixed. We briefly illustrate the proposed method using two datasets.