998 resultados para colesterol HDL
Resumo:
Neste artigo procuramos averiguar a relevância que as marcas e identidades têm nas plataformas participativas no contexto da saúde, em particular na oncologia. Apesar de estas plataformas disponibilizarem aos cidadãos e instituições as mesmas ferramentas, a sua capacidade de mobilização não é a mesma. As instituições parecem ter maior facilidade, mas nem sempre tal acontece. Discutir o conceito de marca e de identidade contribuirá para responder a esta questão, bem como compreender porque é que as diferenças entre os cidadãos e as instituições se podem atenuar nos novos media. Baseamos a nossa análise na observação de páginas do Facebook, de instituições oncológicas e de grupos de apoio de cidadãos; num conjunto de entrevistas a doentes e familiares oncológicos; e em diferentes estudos na saúde. No fim, procura-se esclarecer a importância do estudo das marcas e da identidade, como possível directriz de novas soluções nos media participativos, que contribuam para atenuar o problema individual do cidadão que se relaciona com o cancro.
Resumo:
The goal of the present study is mapping the nature of possible contributions of participatory online platforms in citizen actions that may contribute in the fight against cancer and its associated consequences. These platforms are usually associated with entertainment: in that sense, we intent to test their validity in other domains such as health, as well as contribute to an expanded perception of their potential by their users. The research is based on the analysis of online solidarity networks, namely the ones residing on Facebook, Orkut and the blogosphere, that citizens have been gradually resorting to. The research is also based on the development of newer and more efficient solutions that provide the individual (directly or indirectly affected by issues of oncology) with the means to overcome feelings of impotence and fatality. In this article, we aim at summarizing the processes of usage of these decentralized, freer participatory platforms by citizens and institutions, while attempting to unravel existing hype and stigma; we also provide a first survey of the importance and the role of institutions in this kind of endeavor; lastly, we present a prototype, developed in the context of the present study, that is specifically dedicated to addressing oncology through social media. This prototype is already available online at www.talkingaboutcancer.org, however, still under development and testing. The main objective of this platform is to allow every citizen to freely build their network of contacts and information, according to their own individual and/ or collective needs and desires.
Resumo:
"Bruno Aleixo" is a viral animation character, created by the Portuguese collective GANA, that surfaced online in 2008. Their animation works have meanwhile crossed onto the most diverse media, and have been branching out in multiple webs of narratives, constantly referring to each other, as well as constantly quoting disparate references such as film classics, chatrooms and TV ads for detergents. This paper attempts a triple analysis of this object of study: the ways in which technology has been fostering non-linear narratives while widening the available aesthetic spectrum, the ways in which processes of cultural consumerism are being reinvented in light of the web 2.0, and the use of "pseudo-nonsense" as a process of oblique cultural psychoanalysis. We will further attempt to demonstrate how new media and web networks have been contributing to a fragmentation of audiences, as well as a blurring between dominant cultures and sub-cultural phenomena; and we will end by positing that the structural principles behind the "Bruno Aleixo" series can be applied in social and cultural contexts situated at the opposite end of the spectrum of traditional expectations regarding Animation.
Resumo:
The construction sector has one of the worst occupational safety and health records in Europe. The costs of this scenario are very high, namely costs for workers and their families, costs to organizations, resulting from the absence of workers due to illness, insurance premiums, costs resulting from reduced productivity, cost of replacement and training of workers, etc., and costs to society, which in turn increases the costs of health systems. This paper presents and discusses the development of a methodology for economic evaluation in the context of risk management, which will allow senior management to support decision making. The possible application of this methodology to the construction sector is discussed.
Resumo:
Poly(vinylidene fluoride-trifluoethylene) electrospun membranes were obtained from a blend of dimethylformamide (DMF) and methylethylketone (MEK) solvents. The inclusion of the MEK to the solvent system promotes a faster solvent evaporation allowing complete polymer crystallization during the jet travelling between the tip and the grounded collector. Several processing parameters were systematically changed to study their influence on fiber dimensions. Applied voltage and inner needle diameter do not have large influence on the electrospun fiber average diameter but in the fiber diameter distribution. On the other hand, the increase of the distance between the needle tip to collector results in fibers with larger average diameter. Independently on the processing conditions, all mats are produced in the electroactive phase of the polymer. Further, MC-3T3-E1cell adhesion was not inhibited by the fiber mats preparation, indicating their potential use for biomedical applications.
Resumo:
It is shown that electrospun poly(vynilidene fluoride) nanofibers are fully poled right after preparation and show b-phase contents of 70%, therefore being able to be implemented into electroactive devices without further processing steps. Further,the local piezoelectric properties of individual electrospun fibers have been studied by piezoresponse force microscopy. Piezoelectric response, polarization switching, and nanoscale patterning of the fibers have been demonstrated.
Resumo:
Electroactivematerials can be taken to advantage for the development of sensors and actuators as well as for novel tissue engineering strategies. Composites based on poly(vinylidenefluoride),PVDF,have been evaluated with respect to their biological response. Cell viability and proliferation were performed in vitro both with Mesenchymal Stem Cells differentiated to osteoblasts and Human Fibroblast Foreskin 1. In vivo tests were also performed using 6-week-old C57Bl/6 mice. It was concluded that zeolite and clay composites are biocompatible materials promoting cell response and not showing in vivo pro-inflammatory effects which renders both of them attractive for biological applications and tissue engineering, opening interesting perspectives to development of scaffolds from these composites. Ferrite and silver nanoparticle composites decrease osteoblast cell viability and carbon nanotubes decrease fibroblast viability. Further, carbon nanotube composites result in a significant increase in local vascularization accompanied an increase of inflammatory markers after implantation.
Resumo:
The thermal and hydrolytic degradation of electrospun gelatin membranes cross-linked with glutaraldehyde in vapor phase has been studied. In vitro degradation of gelatin membranes was evaluated in phosphate buffer saline solution at 37 ºC. After 15 days under these conditions, a weight loss of 68 % was observed, attributed to solvation and depolymerization of the main polymeric chains. Thermal degradation kinetics of the gelatin raw material and as-spun electrospun membranes showed that the electrospinning processing conditions do not influence polymer degradation. However, for cross-linked samples a decrease in the activation energy was observed, associated with the effect of glutaraldehyde cross-linking reaction in the inter- and intra-molecular hydrogen bonds of the protein. It is also shown that the electrospinning process does not affect the formation of the helical structure of gelatin chains.
Resumo:
Poly(hydroxybutyrate) (PHB) obtained from sugar cane was dissolved in a blend of chloroform and dimethylformamide (DMF) and electrospun at 40 ºC. By adding DMF to the solution, the electrospinning process for the PHB polymer becomes more stable, allowing complete polymer crystallization during the jet travelling between the tip and the grounded collector. The influence of processing parameters on fiber size and distribution was systematically studied. It was observed that an increase of tip inner diameter promotes a decrease of the fiber average size and a broader distribution. On the other hand, an increase of the electric field and flow rate produces an increase of fiber diameter until a maximum of ~2.0 m, but for electric fields higher than 1.5 kV.cm-1, a decrease of the fiber diameter was observed. Polymer crystalline phase seems to be independent of the processing conditions and a crystallinity degree of 53 % was found. Moreover, thermal degradation of the as-spun membrane occurs in single step degradation with activation energy of 91 kJ/mol. Furthermore, MC-3T3-E1 cell adhesion was not inhibited by the fiber mats preparation, indicating their potential use for biomedical applications.
Resumo:
Purpose Achieving sustainability by rethinking products, services and strategies is an enormous challenge currently laid upon the economic sector, in which materials selection plays a critical role. In this context, the present work describes an environmental and economic life cycle analysis of a structural product, comparing two possible material alternatives. The product chosen is a storage tank, presently manufactured in stainless steel (SST) or in a glass fibre reinforced polymer composite (CST). The overall goal of the study is to identify environmental and economic strong and weak points related to the life cycle of the two material alternatives. The consequential win-win or trade-off situations will be identified via a Life Cycle Assessment/Life Cycle Costing (LCA/LCC) integrated model. Methods The LCA/LCC integrated model used consists in applying the LCA methodology to the product system, incorporating, in parallel, its results into the LCC study, namely those of the Life Cycle Inventory (LCI) and the Life Cycle Impact Assessment (LCIA). Results In both the SST and CST systems the most significant life cycle phase is the raw materials production, in which the most significant environmental burdens correspond to the Fossil fuels and Respiratory inorganics categories. The LCA/LCC integrated analysis shows that the CST has globally a preferable environmental and economic profile, as its impacts are lower than those of the SST in all life cycle stages. Both the internal and external costs are lower, the former resulting mainly from the composite material being significantly less expensive than stainless steel. This therefore represents a full win-win situation. As a consequence, the study clearly indicates that using a thermoset composite material to manufacture storage tanks is environmentally and economically desirable. However, it was also evident that the environmental performance of the CST could be improved by altering its End-of-Life stage. Conclusions The results of the present work provide enlightening insights into the synergies between the environmental and the economic performance of a structural product made with alternative materials. Further, they provide conclusive evidence to support the integration of environmental and economic life cycle analysis in the product development processes of a manufacturing company, or in some cases even in its procurement practices.
Resumo:
The main objective of the present study is to assess the environmental advantages of substituting aluminium for a polymer composite in the manufacture of a structural product (a frame to be used as a support for solar panels). The composite was made of polypropylene and a recycled tyres’ rubber granulate. Analysis of different composite formulations was performed, to assess the variation of the environmental impact with the percentage of rubber granulate incorporation. The results demonstrate that the decision on which of the two systems (aluminium or composite) has the best life cycle performance is strongly dependent on the End-of Life (EoL) stage of the composite frame. When the EoL is deposition in a landfill, the aluminium frame performs globally better than its composite counterpart. However, when it is incineration with energy recovery or recycling, the composite frame is environmentally preferable. The raw material production stage was found to be responsible for most of the impacts in the two frame systems. In that context, it was shown that various benefits can accrue in several environmental impact categories by recycling rubber tyres and using the resulting materials. This is in a significant part also due to the recycling of the steel in the tyres. The present work illustrates how it is possible to minimize the overall environmental impact of consumer products through the adequate selection of their constitutive materials in the design stage. Additionally it demonstrates how an adequate EoL planning can be an important issue when developing a sustainable product, since it can highly influence its overall life cycle performance.
Resumo:
Improvement of the environmental performance of processes and products is a common objective in industry, and has been receiving increased attention in recent years. The main objective of this work is to evaluate the potential environmental impact of two bedding products, a polyurethane foam mattress (PFM) and a pocket spring mattress (PSM). These two types are the most common mattresses used in Europe. A Life Cycle Assessment (LCA) shows that the PFM has a higher environmental impact than the PSM. For both products the main cause of environmental impact is the manufacturing process, respectively the polyurethane foam block moulding process for the PFM, and the pocket spring nucleus process for the PSM. A scenario analysis shows the possibility of reducing the environmental impact of the products’ life cycle using an alternative End-of-Life scenario, resorting to incineration rather than landfill. Two strategies were also studied in order to reduce the environmental impact of the PFM: (1) reutilization of foam that was sent to the waste system management, and (2) a 20% weight reduction of the polyurethane foam. The second strategy has proven to be the most effective.
Resumo:
Experimental scratch resistance testing provides two numbers: the penetration depth Rp and the healing depth Rh. In molecular dynamics computer simulations, we create a material consisting of N statistical chain segments by polymerization; a reinforcing phase can be included. Then we simulate the movement of an indenter and response of the segments during X time steps. Each segment at each time step has three Cartesian coordinates of position and three of momentum. We describe methods of visualization of results based on a record of 6NX coordinates. We obtain a continuous dependence on time t of positions of each of the segments on the path of the indenter. Scratch resistance at a given location can be connected to spatial structures of individual polymeric chains.
Resumo:
Elastin isolated from fresh bovine ligaments was dissolved in a mixture of 1,1,1,3,3,3-Hexafluoro-2-propanol and water and electrospun into fiber membranes under different processing conditions. Fiber mats of randomly and aligned fibers were obtained with fixed and rotating ground collectors and fibrils were composed by thin ribbons whose width depends on electrospinning conditions; fibrils with 721 nm up to 2.12 m width were achieved. After cross-linking with glutaraldehyde, -elastin can uptake as much as 1700 % of PBS solution and a slight increase on fiber thickness was observed. The glass transition temperature of electrospun fiber mats was found to occur at ~ 80 ºC. Moreover, -Elastin showed to be a perfect elastomeric material, and no mechanical hysteresis was found in cycle mechanical measurements. The elastic modulus obtained for oriented and random fibers mats in a PBS solution was 330 ± 10 kPa and 732 ± 165 kPa, respectively. Finally, the electrospinning and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Cell culture results showed good cell adhesion and proliferation in the cross-linked elastin fiber mats.
Resumo:
Composites of styrene–butadiene–styrene (SBS) block copolymer with multiwall carbon nanotubes were processed by solution casting to investigate the influence of filler content, the different ratios of styrene/butadiene in the copolymer and the architecture of the SBS matrix on the electrical, mechanical and electro-mechanical properties of the composites. It was found that filler content and elastomer matrix architecture influence the percolation threshold and consequently the overall composite electrical conductivity. Themechanical properties aremainly affected by the styrene and filler content. Hopping between nearest fillers is proposed as the main mechanism for the composite conduction. The variation of the electrical resistivity is linear with the deformation. This fact, together with the gauge factor values in the range of 2–18, results in appropriate composites to be used as (large) deformation sensors.