956 resultados para cobalt hexacyanoferrate
Resumo:
The effects of bath composition and electroplating conditions on structure, morphology, and composition of amorphous Fe-Cr-P-Co deposits on AISI 1020 steel substrate, priorly plated with a thin Cu deposit, were investigated. The increase of charge density activates the inclusion of Cr in the deposit. However, above specific values of the charge density, which depend on the deposition current density, the Cr content in the deposit decreases. This Cr content decreasing is probably due to the significant hydrogen evolution with the increasing of deposition cur-rent and charge density. The effect of charge density on the content of Fe and Co is not clear. However, there is a tendency of increasing of Fe content and decreasing of Co content with the raising of current density. The Co is more easily deposited than the P, and its presence results in a more intense inhibition effect on the Cr deposition than the inhibition effect caused by P presence. Scanning electron microscope (SEM) analysis showed that Co increasing in the Fe-Cr-P-Co alloys analyzed does not promote the susceptibility to microcracks, which led to a good quality deposit. The passive film of the Fe-Cr-P-Co alloy shows a high ability formation and high protective capacity, and the results obtained by current density of corrosion, j(cor), show that the deposit with addition of Co, Fe31Cr11P28Co30, presents a higher corrosion resistance than the deposit with addition of Ni, Fe54Cr21P20Ni5. (C) 2004 Published by Elsevier B.V.
Resumo:
The feasibility of using internal standardization (IS) to correct for interferences in hydride generation with in situ trapping in graphite furnace was evaluated. Arsenic was chosen as internal standard for Sb determination and Ir was used as permanent modifier. Fluctuations in the main parameters that affect the analytical results were minimized by IS and an effective contribution was verified in the studies of liquid phase interferences. Cobalt and Ni2+ were selected to illustrate the potential use of IS on the correction of interference by transition metals. The application of IS allows the Sb determination in samples containing up to 20-fold higher concentration of the Co2+ and Ni2+ when compared to the procedure without IS. The relative standard deviation of measurements varied from 0.3% to 0.7% and from 1.1% to 3.2% with and without IS, respectively. Recoveries within 92% and 107% of spiked aqueous solution containing Sb(III) and Sb(V) were found. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this work, spinels with the general formula Zn2-xCoxTiO4 were synthesized by the polymeric precursor method and thermally treated at 1,000 A degrees C. The powder precursors were characterized by TG/DTA. A decrease in the DTA peak temperature with the amount of zinc was observed. After the thermal treatment, the characterizations were performed by XRD, IR, colorimetry and UV/VIS spectroscopy. The XRD patterns of all the samples showed the presence of the spinel phase. Infrared spectroscopy showed the presence of ester complexes for Zn2TiO4 after thermal treatment at 500 A degrees C, which disappeared after cobalt addition, indicating that organic material elimination was favored.
Resumo:
MoO3 is a lamellar material with applications in different areas, as solid lubricants, catalysis, solar cells, etc. In the present work, MoO3 powders, synthesized by the polymeric precursor method, were doped with nickel or cobalt. The powder precursors were characterized by TG/DTA. After calcination between 500 and 700 degrees C, the samples were characterized by X-ray diffraction, infrared and Raman spectroscopy and scanning electron microscopy. beta-MoO3 was obtained after calcination at low temperatures. With the temperature increase, alpha-MoO3 is observed, with a preferential growth of the (0 2k 0) planes, when the material is doped and calcined at 700 degrees C. Doping with nickel increases five times the preferential growth. As a consequence, plate-like particles are observed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Cobalt oxides, specially the ones with perovskite structure, are of a high technological interest, due to their interesting optical, electrical and magnetic properties. La(1 -x)Ca(x)CoO(3) powder samples were synthesized by the polymeric precursor method, with x varying from 0 to 0.4. The powder precursors were characterized by TG/DTA, XRD and IR. The TG curves showed several thermal decomposition steps; the first one is ascribed to the loss of water and the remaining steps are related to the combustion of the organic matter. The XRD patterns indicated only the presence of the perovskite phase. Moreover, the structure changes from rhombohedral to cubic, as calcium is added to the perovskite and the calcination temperature increases.
Resumo:
Different kinds of modifiers and coatings on the integrated platform of transversely heated graphite atomizer (THGA) have been tested for the simultaneous determination of two group of elements: the first, the more volatile, formed by arsenic, bismuth, lead, antimony and selenium; the second, the less volatile, formed by cobalt, chromium, cupper, iron and manganese in milk by electrothermal atomic absorption spectrometry. Different Rh-modifiers were studied, such as Rh-coated platforms (Rh), carbide plus rhodium coated platforms (W-Rh, Zr-Rh), carbide-coated platforms (W and Zr) with co-injection of RhCl3, solutions and uncoated platforms with injection of solutions of Pd(NO3)(2), Mg(NO3)(2), and RhCl3. Milk samples were diluted 1:10 in 1.0% HNO3 and injected into the tube. The mass of modifier deposited and co-injected in the tube and the use of end capped tubes were also evaluated in order to improve the electrothermal behavior of analytes. Integrated platform pretreated with W plus co-injection RhCl3 for first group and pretreated with W-Rh for second group were elected. For 20 mu L injected samples the analytical curves in the 5.0-20.0 mu g L-1 concentration range have good linear correlation coefficients (r > 0.998). Relative standard deviations (n = 12) are < 6% and the calculated characteristic masses are between 5 pg and 62 pg.
Resumo:
The radial distribution functions of cobalt glasses with 6%, 8%, and 14% CoO are compared with those of suitable cobalt-free borosilicate matrices leading to difference distribution curves representative of the cobalt structural arrangement. Analysis of the curves indicates that cobalt ions are surrounded by approximately four oxygen neighbors at the distance expected for fourfold coordination. © 1986 American Institute of Physics.
Resumo:
The authors looked for the verification of the fatigue of retentive clasps utilized on the removable partial denture. According to this, it was idealized and built on assay machine, that through movements, simulate the insertion and removal of the clasp for a pattern tooth, manufactured on cobalt-chromium which has all the preparation normally utilized to the correct confection of this type of prosthesis. It was utilized three different commercial alloys based on cobalt-chromium: L1-Biosil; L2-Steldent; L3-Duracron. It was utilized the T clasp of Roach, with was tested upon three different proportions among width and thickness: E1-1.7;E2-2.0 and E3-2.3 and was casted through two casting techniques: F1-oxygen-gas and F2-oxygen-acetylene. The clasps were tested on the machine, which allowed the reading of the number of insertion and removal cycles made until fatigue appeared. The obtained results were submitted to the statistic analysis and the authors concluded that: a) L3 (Duracrom) obtained the best results followed by L1 (Biosil) and finally L3 (Steldent); b) among the analyzed thickness, the best results were obtained by E3, followed by E2 and after this E1; c) form the casting techniques, F2 gave us the best results.
Resumo:
The authors tested the T clasp of Roach in three differents proportions among width and thickness: E1-1.7; E2-2.0 and E3-2.3, with a constant length of 15 mm. These clasps were casted with three cobalt-chromium alloys (L1-Biosil; L2-Steldent and L3-Duracrom), through two casting techniques (F1-oxygen-gas and F2-oxygen-acetylene). The fatigue of the clasps were verified by using and assay machine, that through movements, simulate the insertion and removal of the clasps for a pattern which were obtained from a premolar, prepared in a surveyor. This machine detect the fatigue of the clasps and count the number of cycles of insertion and removal realized. The obtained results of the interaction between the analysed factors, were submitted to the statistic analysis and the authors concluded that: a) the interaction of factors, Alloy x Thickness, Alloy x Casting Technique and Thickness x Casting Technique did not change the order of effects that the factors showed separately but gave rise to effects of different magnitude for any observed sense; b) the simultaneous interaction of the factors Alloy x Thickness x Casting Technique confirmed the superiority of the L3 alloy, the thickness E3 and the F2 casting technique.
Resumo:
In this work, the chemical structure, the microstructure and the surface morphology of two non-ferrous materials used in dental implants (Ti-6Al-4V and Co-Cr-Mo) were studied. This was done by chemical analysis, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), and strength measurements (HV). Metallographic studies reveal that titanium alloy surface present a fine granular binary phase structure, while cobalt alloy present cast dendrite structures with an intense precipitation of carbides. To correlate the macro and microstructure with the mechanical behavior of the material, microhardness measurements were performed. Using the Vickers hardening method, the Ti-6Al-4V alloy yielded strength mean values smaller than the Co-Cr-Mo alloy. Their values are associated to the chemical composition and to the microstructural distribution of these materials. The Ti-6Al-4V alloy presents hardness similar to dental enamel, which suggests better performance as dental implant.
Resumo:
The non-linear electrical properties of CoO-doped and Nb205-doped SnO2 ceramics were characterized. X-ray diffraction and scanning electron microscopy indicated that the system is single phase. The electrical conduction mechanism for low applied electrical field was associated with thermionic emission of the Schottky type. An atomic defect model based on the Schottky double-barrier formation was proposed to explain the origin of the potential barrier at the ceramic grain boundaries. These defects create depletion layers at grain boundaries, favouring electron tunnelling at high values of applied electrical field. © 1998 Chapman & Hall.
Resumo:
The objective of the study presented in this article was to analyze the influence of remelting of two odontological alloys: Dentorium and Steeldent, on the mechanical properties and on the chemical composition. For the two alloys, samples, containing 10% and 50% new alloy, were subjected to tensile test, micrography and chemical analysis. The alloys presented similar mechanical properties, except for the elongation, which presented higher values for the Dentorium 50% new alloy. This is due to the smaller carbides formed in this sample. The remelting itself seems not to be responsible for these differences, but they are probably due to the lack of a good control of the casting process. The micrography showed a dendritic column matrix, with carbides in the interdentric region and inside dendritic grain. In the chemical composition was observed few elements percentage change.
Resumo:
Results are presented on the mechanism of passivation of Co-Cr-Mo biological implant alloys in physiological serum using open circuit potentiometry, potentiodynamic curves, and electrochemical impedance spectroscopy. The potential dependence of impedance data and the analysis of the parameters obtained indicate a progressive diminution of the initial layer thickness and the simultaneous formation of a second higher resistive layer. In more severe conditions than the existent in human body, the metallographic examination of the alloy surface shows localized corrosion in interdendritric regions. Elemental analysis of the surface reveals the presence of higher chromium content in these regions. The presence of chlorine was not detected, which suggested that during preferential attack, soluble species are also formed.
Resumo:
Co3O4 can be used as electrocatalyst for oxygen evolution reaction. The macro and microstructure of the oxide, obtained by compacting and sintering lithium-doped Co3O4 powder in atmosphere of dry air and in conditions of controlled temperature and time was analyzed by metallographic techniques. The porous material was characterized by XRD, SEM and EDS combined techniques. For working temperatures up to 1200°C, the pellet was consituted of particles with varying sizes over a wide range of particle size and, at higher temperatures CoO is formed and polymorphic transformation was observed. The materials were also characterized electrochemically in alkaline media by open circuit potential and potentiodynamic I/E measurements. The results were compared to those previously prepared by others by thermal deposition.
Resumo:
Chemically modified electrodes based on hexacyanometalate films are presented as a tool in analytical chemistry. Use of amperometric sensors and/or biosensors based on the metal-hexacyanoferrate films is a tendency. This article reviews some applications of these films for analytical determination of both inorganic (e.g. As3+, S2O3 2-) and organic (e.g. cysteine, hydrazine, ascorbic acid, gluthatione, glucose, etc.) compounds.