983 resultados para cell manufacturing
Resumo:
Incubation of acetates of geraniol, citronellol and linalool with Aspergillus niger resulted in their hydrolysis to corresponding alcohols which were further hydroxylated to their respective 8-hydroxy derivatives. In the case of linalyl acetate, besides linalool and 8-hydroxylinalool, small amounts of geraniol and agr-terpineol were also formed. Microsomes (105 000xg sediment) prepared from induced cells of A. niger were found to convert (1-3H)citronellol to 8-hydroxy citronellol in the presence of NADPH and O2. The pH optimum for the hydroxylase was found to be 7.6.
Resumo:
Details of a simple and convenient high-pressure cell for continuous-wave, wide-line nuclear magnetic resonance investigation at high pressures and low temperatures are described. Experimental results obtained with the cell at 14*108 Pa and 77K for ammonium iodide are presented briefly.
Resumo:
Ewing sarcoma is an aggressive and poorly differentiated malignancy of bone and soft tissue. It primarily affects children, adolescents, and young adults, with a slight male predominance. It is characterized by a translocation between chromosomes 11 and 22 resulting in the EWSR1-FLI1fusion transcription factor. The aim of this study is to identify putative Ewing sarcoma target genes through an integrative analysis of three microarray data sets. Array comparative genomic hybridization is used to measure changes in DNA copy number, and analyzed to detect common chromosomal aberrations. mRNA and miRNA microarrays are used to measure expression of protein-coding and miRNA genes, and these results integrated with the copy number data. Chromosomal aberrations typically contain also bystanders in addition to the driving tumor suppressor and oncogenes, and integration with expression helps to identify the true targets. Correlation between expression of miRNAs and their predicted target mRNAs is also evaluated to assess the results of post-transcriptional miRNA regulation on mRNA levels. The highest frequencies of copy number gains were identified in chromosome 8, 1q, and X. Losses were most frequent in 9p21.3, which also showed an enrichment of copy number breakpoints relative to the rest of the genome. Copy number losses in 9p21.3 were found have a statistically significant effect on the expression of MTAP, but not on CDKN2A, which is a known tumor-suppressor in the same locus. MTAP was also down-regulated in the Ewing sarcoma cell lines compared to mesenchymal stem cells. Genes exhibiting elevated expression in association with copy number gains and up-regulation compared to the reference samples included DCAF7, ENO2, MTCP1, andSTK40. Differentially expressed miRNAs were detected by comparing Ewing sarcoma cell lines against mesenchymal stem cells. 21 up-regulated and 32 down-regulated miRNAs were identified, includingmiR-145, which has been previously linked to Ewing sarcoma. The EWSR1-FLI1 fusion gene represses miR-145, which in turn targets FLI1 forming a mutually repressive feedback loop. In addition higher expression linked to copy number gains and compared to mesenchymal stem cells, STK40 was also found to be a target of four different miRNAs that were all down-regulated in Ewing sarcoma cell lines compared to the reference samples. SLCO5A1 was identified as the only up-regulated gene within a frequently gained region in chromosome 8. This region was gained in over 90 % of the cell lines, and also with a higher frequency than the neighboring regions. In addition, SLCO5A1 was found to be a target of three miRNAs that were down-regulated compared to the mesenchymal stem cells.
Resumo:
We propose a novel algorithm for placement of standard cells in VLSI circuits based on an analogy of this problem with neural networks. By employing some of the organising principles of these nets, we have attempted to improve the behaviour of the bipartitioning method as proposed by Kernighan and Lin. Our algorithm yields better quality placements compared with the above method, and also makes the final placement independent of the initial partition.
Resumo:
The activity of NiO in NiO-MgO rock salt solid solution has been measured at 1300 K by employing a solid-state galvanic cell: Pt,Ni+ NiO||(CaO)ZrO2||Ni + (Nix,Mgl-x)O, Pt. A high-density tube of Zr02-15 mol% CaO has been used as the solid electrolyte for the emf measurements. The activities of the component oxides in the rock salt solid solution exhibit negative deviation from ideality at the temperature of investigation. The solid solution obeys regular solution behavior at 1300 K. The value of the regular solution parameter is found to be -12000 ((l000) J mol-1. The composition dependence of ΔGEx obtained in this study agrees reasonably well with the calorimetric data reported in the literature for NiO-MgO solid solution.
Resumo:
This paper is concerned with grasping biological cells in aqueous medium with miniature grippers that can also help estimate forces using vision-based displacement measurement and computation. We present the design, fabrication, and testing of three single-piece, compliant miniature grippers with parallel and angular jaw motions. Two grippers were designed using experience and intuition, while the third one was designed using topology optimization with implicit manufacturing constraints. These grippers were fabricated using different manufacturing techniques using spring steel and polydimethylsiloxane ( PDMS). The grippers also serve the purpose of a force sensor. Toward this, we present a vision-based force-sensing technique by solving Cauchy's problem in elasticity using an improved algorithm. We validated this technique at the macroscale, where there was an independent method to estimate the force. In this study, the gripper was used to hold a yeast ball and a zebrafish egg cell of less than 1 mm in diameter. The forces involved were estimated to be about 30 and 10 mN for the yeast ball and the zebrafish egg cell, respectively.
Resumo:
Uveal melanoma (UM) is the second most common primary intraocular cancer worldwide. It is a relatively rare cancer, but still the second most common type of primary malignant melanoma in humans. UM is a slowly growing tumor, and gives rise to distant metastasis mainly to the liver via the bloodstream. About 40% of patients with UM die of metastatic disease within 10 years of diagnosis, irrespective of the type of treatment. During the last decade, two main lines of research have aimed to achieve enhanced understanding of the metastasis process and accurate prognosis of patients with UM. One emphasizes the characteristics of tumor cells, particularly their nucleoli, and markers of proliferation, and the other the characteristics of tumor blood vessels. Of several morphometric measurements, the mean diameter of the ten largest nucleoli (MLN) has become the most widely applied. A large MLN has consistently been associated with high likelihood of dying from UM. Blood vessels are of paramount importance in metastasis of UM. Different extravascular matrix patterns can be seen in UM, like loops and networks. This presence is associated with death from metastatic melanoma. However, the density of microvessels is also of prognostic importance. This study was undertaken to help understanding some histopathological factors which might contribute to developing metastasis in UM patients. Factors which could be related to tumor progression to metastasis disease, namely nucleolar size, MLN, microvascular density (MVD), cell proliferation, and The Insulin-like Growth Factor 1 Receptor(IGF-1R), were investigated. The primary aim of this thesis was to study the relationship between prognostic factors such as tumor cell nucleolar size, proliferation, extravascular matrix patterns, and dissemination of UM, and to assess to what extent there is a relationship to metastasis. The secondary goal was to develop a multivariate model which includes MLN and cell proliferation in addition to MVD, and which would fit better with population-based, melanoma-related survival data than previous models. I studied 167 patients with UM, who developed metastasis even after a very long time following removal of the eye, metastatic disease was the main cause of death, as documented in the Finnish Cancer Registry and on death certificates. Using an independent population-based data set, it was confirmed that MLN and extravascular matrix loops and networks were unrelated, independent predictors of survival in UM. Also, it has been found that multivariate models including MVD in addition to MLN fitted significantly better with survival data than models which excluded MVD. This supports the idea that both the characteristics of the blood vessels and the cells are important, and the future direction would be to look for the gene expression profile, whether it is associated more with MVD or MLN. The former relates to the host response to the tumor and may not be as tightly associated with the gene expression profile, yet most likely involved in the process of hematogenous metastasis. Because fresh tumor material is needed for reliable genetic analysis, such analysis could not be performed Although noninvasive detection of certain extravascular matrix patterns is now technically possible,in managing patients with UM, this study and tumor genetics suggest that such noninvasive methods will not fully capture the process of clinical metastasis. Progress in resection and biopsy techniques is likely in the near future to result in fresh material for the ophthalmic pathologist to correlate angiographic data, histopathological characteristics such as MLN, and genetic data. This study supported the theory that tumors containing epithelioid cells grow faster and have poorer prognosis when studied by cell proliferation in UM based on Ki-67 immunoreactivity. Cell proliferation index fitted best with the survival data when combined with MVD, MLN, and presence of epithelioid cells. Analogous with the finding that high MVD in primary UM is associated with shorter time to metastasis than low MVD, high MVD in hepatic metastasis tends to be associated with shorter survival after diagnosis of metastasis. Because the liver is the main organ for metastasis from UM, growth factors largely produced in the liver hepatocyte growth factor, epidermal growth factor and insulin-like growth factor-1 (IGF-1) together with their receptors may have a role in the homing and survival of metastatic cells. Therefore the association between immunoreactivity for IGF-1R in primary UM and metastatic death was studied. It was found that immunoreactivity for IGF-IR did not independently predict metastasis from primary UM in my series.
Resumo:
Embryonic stem cells offer potentially a ground-breaking insight into health and diseases and are said to offer hope in discovering cures for many ailments unimaginable few years ago. Human embryonic stem cells are undifferentiated, immature cells that possess an amazing ability to develop into almost any body cell such as heart muscle, bone, nerve and blood cells and possibly even organs in due course. This remarkable feature, enabling embryonic stem cells to proliferate indefinitely in vitro (in a test tube), has branded them as a so-called miracle cure . Their potential use in clinical applications provides hope to many sufferers of debilitating and fatal medical conditions. However, the emergence of stem cell research has resulted in intense debates about its promises and dangers. On the one hand, advocates hail its potential, ranging from alleviating and even curing fatal and debilitating diseases such as Parkinson s, diabetes, heart ailments and so forth. On the other hand, opponents decry its dangers, drawing attention to the inherent risks of human embryo destruction, cloning for research purposes and reproductive cloning eventually. Lately, however, the policy battles surrounding human embryonic stem cell innovation have shifted from being a controversial research to scuffles within intellectual property rights. In fact, the ability to obtain patents represents a pivotal factor in the economic success or failure of this new biotechnology. Although, stem cell patents tend to more or less satisfy the standard patentability requirements, they also raise serious ethical and moral questions about the meaning of the exclusions on ethical or moral grounds as found in European and to an extent American and Australian patent laws. At present there is a sort of a calamity over human embryonic stem cell patents in Europe and to an extent in Australia and the United States. This in turn has created a sense of urgency to engage all relevant parties in the discourse on how best to approach patenting of this new form of scientific innovation. In essence, this should become a highly favoured patenting priority. To the contrary, stem cell innovation and its reliance on patent protection risk turmoil, uncertainty, confusion and even a halt on not only stem cell research but also further emerging biotechnology research and development. The patent system is premised upon the fundamental principle of balance which ought to ensure that the temporary monopoly awarded to the inventor equals that of the social benefit provided by the disclosure of the invention. Ensuring and maintaining this balance within the patent system when patenting human embryonic stem cells is of crucial contemporary relevance. Yet, the patenting of human embryonic stem cells raises some fundamental moral, social and legal questions. Overall, the present approach of patenting human embryonic stem cell related inventions is unsatisfactory and ineffective. This draws attention to a specific question which provides for a conceptual framework for this work. That question is the following: how can the investigated patent offices successfully deal with patentability of human embryonic stem cells? This in turn points at the thorny issue of application of the morality clause in this field. In particular, the interpretation of the exclusions on ethical or moral grounds as found in Australian, American and European legislative and judicial precedents. The Thesis seeks to compare laws and legal practices surrounding patentability of human embryonic stem cells in Australia and the United States with that of Europe. By using Europe as the primary case study for lessons and guidance, the central goal of the Thesis then becomes the determination of the type of solutions available to Europe with prospects to apply such to Australia and the United States. The Dissertation purports to define the ethical implications that arise with patenting human embryonic stem cells and intends to offer resolutions to the key ethical dilemmas surrounding patentability of human embryonic stem cells and other morally controversial biotechnology inventions. In particular, the Thesis goal is to propose a functional framework that may be used as a benchmark for an informed discussion on the solution to resolving ethical and legal tensions that come with patentability of human embryonic stem cells in Australian, American and European patent worlds. Key research questions that arise from these objectives and which continuously thread throughout the monograph are: 1. How do common law countries such as Australia and the United States approach and deal with patentability of human embryonic stem cells in their jurisdictions? These practices are then compared to the situation in Europe as represented by the United Kingdom (first two chapters), the Court of Justice of the European Union and the European Patent Office decisions (Chapter 3 onwards) in order to obtain a full picture of the present patenting procedures on the European soil. 2. How are ethical and moral considerations taken into account at patent offices investigated when assessing patentability of human embryonic stem cell related inventions? In order to assess this part, the Thesis evaluates how ethical issues that arise with patent applications are dealt with by: a) Legislative history of the modern patent system from its inception in 15th Century England to present day patent laws. b) Australian, American and European patent offices presently and in the past, including other relevant legal precedents on the subject matter. c) Normative ethical theories. d) The notion of human dignity used as the lowest common denominator for the interpretation of the European morality clause. 3. Given the existence of the morality clause in form of Article 6(1) of the Directive 98/44/EC of the European Parliament and of the Council of 6 July 1998 on the legal protection of biotechnological inventions which corresponds to Article 53(a) European Patent Convention, a special emphasis is put on Europe as a guiding principle for Australia and the United States. Any room for improvement of the European morality clause and Europe s current manner of evaluating ethical tensions surrounding human embryonic stem cell inventions is examined. 4. A summary of options (as represented by Australia, the United States and Europe) available as a basis for the optimal examination procedure of human embryonic stem cell inventions is depicted, whereas the best of such alternatives is deduced in order to create a benchmark framework. This framework is then utilised on and promoted as a tool to assist Europe (as represented by the European Patent Office) in examining human embryonic stem cell patent applications. This method suggests a possibility of implementing an institution solution. 5. Ultimately, a question of whether such reformed European patent system can be used as a founding stone for a potential patent reform in Australia and the United States when examining human embryonic stem cells or other morally controversial inventions is surveyed. The author wishes to emphasise that the guiding thought while carrying out this work is to convey the significance of identifying, analysing and clarifying the ethical tensions surrounding patenting human embryonic stem cells and ultimately present a solution that adequately assesses patentability of human embryonic stem cell inventions and related biotechnologies. In answering the key questions above, the Thesis strives to contribute to the broader stem cell debate about how and to which extent ethical and social positions should be integrated into the patenting procedure in pluralistic and morally divided democracies of Europe and subsequently Australia and the United States.
Resumo:
In this paper, a new five-level inverter topology for open-end winding induction-motor (IM) drive is proposed. The open-end winding IM is fed from one end with a two-level inverter in series with a capacitor-fed H-bridge cell, while the other end is connected to a conventional two-level inverter. The combined inverter system produces voltage space-vector locations identical to that of a conventional five-level inverter. A total of 2744 space-vector combinations are distributed over 61 space-vector locations in the proposed scheme. With such a high number of switching state redundancies, it is possible to balance the H-bridge capacitor voltages under all operating conditions including overmodulation region. In addition to that, the proposed topology eliminates 18 clamping diodes having different voltage ratings compared with the neutral point clamped inverter. On the other hand, it requires only one capacitor bank per phase, whereas the flying-capacitor scheme for a five-level topology requires more than one capacitor bank per phase. The proposed inverter topology can be operated as a three-level inverter for full modulation range, in case of any switch failure in the capacitor-fed H-bridge cell. This will increase the reliability of the system. The proposed scheme is experimentally verified on a four-pole 5-hp IM drive.
Resumo:
BACKGROUND: Earlier we reported that an oral administration of two mannose-specific dietary lectins, banana lectin (BL) and garlic lectin (GL), led to an enhancement of hematopoietic stem and progenitor cell (HSPC) pool in mice. STUDY DESIGN AND METHODS: Cord blood derived CD34+ HSPCs were incubated with BL, GL, Dolichos lectin (DL), or artocarpin lectin (AL) for various time periods in a serum- and growth factor free medium and were subjected to various functional assays. Reactive oxygen species (ROS) levels were detected by using DCHFDA method. Cell fractionation was carried out using lectin-coupled paramagnetic beads. RESULTS: CD34+ cells incubated with the lectins for 10 days gave rise to a significantly higher number of colonies compared to the controls, indicating that all four lectins possessed the capacity to protect HSPCs in vitro. Comparative analyses showed that the protective ability of BL and GL was better than AL and DL and, therefore, further experiments were carried out with them. The output of long-term culture-initiating cell (LTC-IC) and extended LTC-IC assays indicated that both BL and GL protected primitive stem cells up to 30 days. The cells incubated with BL or GL showed a substantial reduction in the ROS levels, indicating that these lectins protect the HSPCs via antioxidant mechanisms. The mononuclear cell fraction isolated by lectin-coupled beads got enriched for primitive HSPCs, as reflected in the output of phenotypic and functional assays.CONCLUSION: The data show that both BL and GL protect the primitive HSPCs in vitro and may also serve as cost-effective HSPC enrichment tools.
Resumo:
Salmonella, a Gram-negative facultative intracellular pathogen is capable of infecting vast array of hosts. The striking ability of Salmonella to overcome every hurdle encountered in the host proves that they are true survivors. In the host, Salmonella infects various cell types and needs to survive and replicate by countering the defense mechanism of the specific cell. In this review, we will summarize the recent insights into the cell biology of Salmonella infection. Here, we will focus on the findings that deal with the specific mechanism of various cell types to control Salmonella infection. Further, the survival strategies of the pathogen in response to the host immunity will also be discussed in detail. Better understanding of the mechanisms by which Salmonella evade the host defense system and establish pathogenesis will be critical in disease management. (C) 2010 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
The terminal solid solubilities of the periclase (MgO-rich) and zincite (ZnO-rich) solid solutions in the MgO---ZnO system have been determined by measuring the activity of MgO using a solid-state galvanic cell of the type 02(g), Pt/MgO, MgF2//MgF2//{χMgO+(1-χ)ZnO}(s, sln), MgF2/Pt, O2(g) in the temperature range 900–1050°C. The ZnO activity was calculated by graphical Gibbs-Duhem integration. The activity-composition plots of both components exhibit a strong positive deviation from ideality and are characterised by a miscibility gap. The terminal solid solubilities of the periclase and zincite solid solutions obtained from the activity-composition plots are found to be in reasonable agreement with those reported in the literature.