981 resultados para anaerobic biofilms


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of biodigester for basic and environmental sanitation has large demand in Brazil. A biodigester was built to treat conjunctly the human and pig feces and urine, regarding to its future application in rural small towns. The results show that the biodigester can reduce 90% of COD and BOD and, up to 99.99% of thermotolerant coliforms. The treated effluent has variable quantities of macro- and micro-nutrients; and organic matter. However, the concentration variability of the nutrients makes difficult a dosed application into soil. The soluble salts (mainly as Na+ form) make necessary a controlled use to avoid environmental degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petroleum biodegradation in reservoirs is a process caused by different microorganisms affecting many oil deposits which modifies the oil composition in a quasi-stepwise process starting from n-alkanes and isoprenoids through to diasteranes. This causes oil souring and increased viscosity, sulfur and metal content, having a direct impact on oil production and refining costs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the importance of biofilms in the food industry, new products are being developed to enhance the efficiency of cleaning food-contact surfaces. Biosurfactants could be an alternative to synthetic products. The major advantages of biosurfactants over synthetic detergents are their low toxicity and highly biodegradable nature. Biosurfactants may also exhibit antimicrobial, anti-adhesive and anticorrosive activity concomitantly. In this review, we emphasize the potential application of biosurfactants as surface coating agents to prevent corrosion and decrease planktonic and sessile microbial growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optimization of the anaerobic degradation of the azo dye Remazol golden yellow RNL was performed according to multivariate experimental designs: a 2² full-factorial design and a central composite design (CCD). The CCD revealed that the best incubation conditions (90% color removal) for the degradation of the azo dye (50 mg L- 1) were achieved with 350 mg L- 1 of yeast extract and 45 mL of anaerobic supernatant (free cell extract) produced from the incubation of 650 mg L- 1 of anaerobic microorganisms and 250 mg L- 1 of glucose. A first-order kinetics model best fit the experimental data (k = 0.0837 h- 1, R² = 0.9263).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological production of hydrogen through anaerobic fermentation has received increasing attention and offers a great potential as an alternative process for clean fuel production in the future. Considering biological systems for H2 production, anaerobic fermentation stands out, primarily due to its higher production of H2 compared with other biological processes. In addition the possibility of using different agro-industrial wastes as substrates opens up infinite possibilities. The development and implementation of sustainable processes for converting renewable materials into different value-added products is essential for the full exploitation of Brazilian agro-industrial wastes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erwinia carotovora subsp. atroseptica (Eca), E. carotovora subsp. carotovora (Ecc) and E. chrysanthemi (Ech) may cause potato (Solanum tuberosum) blackleg. To determine the occurrence of these pathogens in the conditions found in the State of Rio Grande do Sul (RS), potato plants showing blackleg symptoms were harvested from 22 fields in nine counties in Serra do Nordeste, Planalto, Depressão Central, and Grandes Lagoas, from September to December of 1999 (Spring-Summer season). Green pepper (Capsicum annuum) fruits were used as a host to enrich for pectolytic erwinia from potato stems with blackleg symptoms. Bacteria were subsequently isolated on non-selective medium. Isolates that were Gram-negative, facultatively anaerobic, and pitted crystal-violet-pectate medium were tested for biochemical traits to identify the species and subspecies. Four hundred strains were identified as either Eca, Ecc or Ech. Although the three erwinias were found in RS potato fields, only three strains of Ech were found in one field. Frequencies of Eca and Ecc were 55 and 42%, respectively. Eight strains could not be assigned based on the biochemical characterization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nutrient load to the Gulf of Finland has started to increase as a result of the strong economic recovery in agriculture and livestock farming in the Leningrad region. Also sludge produced from municipal wastewater treatment plant of the Leningrad region causes the great impact on the environment, but still the main options for its treatment is disposal on the sludge beds or Landfills. The aim of this study was to evaluate the implementation of possible joint treatment methods of manure form livestock and poultry enterprises and sewage sludge produced from municipal wastewater treatment plants in the Leningrad region. The study is based on published data. The most attention was put on the anaerobic digestion and incineration methods. The manure and sewage sludge generation for the whole Leningrad region and energy potential produced from their treatment were estimated. The calculations showed that total amount of sewage sludge generation is 1 348 000 t/a calculated on wet matter and manure generation is 3 445 000 t/a calculated on wet matter. The potential heat release from anaerobic digestion process and incineration process is 4 880 000 GJ/a and 5 950 000 GJ/a, respectively. Furthermore, the work gives the overview of the general Russian and Finnish legislation concerning manure and sewage sludge treatment. In the Gatchina district it was chosen the WWTP and livestock and poultry enterprises for evaluation of the centralized treatment plant implementation based on anaerobic digestion and incineration methods. The electricity and heat power of plant based on biogas combustion process is 4.3 MW and 7.8 MW, respectively. The electricity and heat power of plant based on manure and sewage sludge incineration process is 3.0 MW and 6.1 MW, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The condition of Baltic Sea has weakened considerably because of eutrophication which has caused massive increase of devalued fish. The condition of Baltic Sea can be helped by fishing these fish. This study handles three different ways to approach those fish utilizations and counts carbon footprint for those three chains. Environmental point of views are also examined. There are three different fish processing chains. Every processing chain begins with fishing the fish in Baltic Sea. After that the fishes are prepared by crushing and some formic acid is added to ensure preservation. In the first processing chain the fishes are processed as biodiesel. The waste from the biodiesel process is taken to the anaerobic digestion and the forming methane is used as energy. In the second chain the fishes are taken straight to the anaerobic digestion after preparing. In the third chain, the fish will be first prepared and then taken to fur farms as forage. The carbon footprint has been calculated for 1000 kg fish. The carbon footprint in the first chain is 164-178 kg CO2e, in the second chain 313 – 333 kg CO2e and in the third chain 363 kg CO2e. In the processing chains the bioenergy is produced from the biodiesel, anaerobic digestion and from the glycerol, which is by-product of the biodiesel. The energy produced from the biodiesel is so-called emission neutral, which is not taken into account when calculating emissions. The energy is used to compensate the emissions caused by fossil fuels. The PAS 2050 was used to calculate the carbon footprint. Only carbon dioxide and methane were used when calculating the carbon footprint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lappeenrannassa kerätään ja hyödynnetään tällä hetkellä kaatopaikkakaasua 0,3 milj.m3 vuodessa. Biokaasua voitaisiin tuottaa Lappeenrannassa mädättämällä bioperäisiä jätteitä ja biokaasuntuotantoa varten kasvatettuja energiakasveja. Biokaasuntuotantoon soveltuvia jätteitä ovat erilliskerätty biojäte, jätevedenpuhdistamon jätevesiliete, puutarhajäte, lietelannat ja oljet. Kesannolla olevilla peltoaloilla voitaisiin kasvattaa ruokohelpeä. Biokaasun tuotantoon soveltuvia materiaaleja voitaisiin kerätä 143 000 t/a ja kasvattaa 68 000 t/a. Työssä tarkastellaan vaihtoehtoa, jossa mädätetään vain puhdistamoliete, sekä useita materiaaleja mädättävää yhteismädättämöä, johon liittyen tutkitaan kolmea eri vaihtoehtoa: kunnallisen jätteen mädätystä, kaiken jätteen mädätystä ja jätteen sekä energiakasvien mädätystä. Paras sijoituspaikka mädättämölle olisi jätevedenpuhdistamon läheisyydessä. Jätemateriaalista saataisiin kaasua enintään 12 milj. m3 ja energiakasveista enintään 16 milj. m3. Kaasusta voitaisiin tuottaa energiaa CHP-laitoksessa enintään 184 GWh. Mikäli biokaasun tuotannolla halutaan ensisijaisesti vähentää kasvi-huonekaasupäästöjä, kannattaa kaasu jalostaa ajoneuvopolttoaineeksi. Jalostettu kaasu on mahdollista myös syöttää maakaasuverkostoon. Suurimmat tulot on mahdollista saavuttaa yhdistetyssä sähkön- ja lämmöntuotannossa, mikäli biokaasulle suunniteltu syöttötariffi toteutuu. Muussa tapauksessa suurimmat tulot saadaan jalostamalla biokaasua ajoneuvojen polttoaineeksi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methane-rich landfill gas is generated when biodegradable organic wastes disposed of in landfills decompose under anaerobic conditions. Methane is a significant greenhouse gas, and landfills are its major source in Finland. Methane production in landfill depends on many factors such as the composition of waste and landfill conditions, and it can vary a lot temporally and spatially. Methane generation from waste can be estimated with various models. In this thesis three spreadsheet applications, a reaction equation and a triangular model for estimating the gas generation were introduced. The spreadsheet models introduced are IPCC Waste Model (2006), Metaanilaskentamalli by Jouko Petäjä of Finnish Environment Institute and LandGEM (3.02) of U.S. Environmental Protection Agency. All these are based on the first order decay (FOD) method. Gas recovery methods and gas emission measurements were also examined. Vertical wells and horizontal trenches are the most commonly used gas collection systems. Emission measurements chamber method, tracer method, soil core and isotope measurements, micrometeorological mass-balance and eddy covariance methods and gas measuring FID-technology were discussed. Methane production at Ämmässuo landfill of HSY Helsinki Region Environmental Services Authority was estimated with methane generation models and the results were compared with the volumes of collected gas. All spreadsheet models underestimated the methane generation at some point. LandGEM with default parameters and Metaanilaskentamalli with modified parameters corresponded best with the gas recovery numbers. Reason for the differences between evaluated and collected volumes could be e.g. that the parameter values of the degradable organic carbon (DOC) and the fraction of decomposable degradable organic carbon (DOCf) do not represent the real values well enough. Notable uncertainty is associated with the modelling results and model parameters. However, no simple explanation for the discovered differences can be given within this thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Original sludge from wastewater treatment plants (WWTPs) usually has a poor dewaterability. Conventionally, mechanical dewatering methods are used to increase the dry solids (DS) content of the sludge. However, sludge dewatering is an important economic factor in the operation of WWTPs, high water content in the final sludge cake is commonly related to an increase in transport and disposal costs. Electro‐dewatering could be a potential technique to reduce the water content of the final sludge cake, but the parameters affecting the performance of electro‐dewatering and the quality of the resulting sludge cake, as well as removed water, are not sufficiently well known. In this research, non‐pressure and pressure‐driven experiments were set up to investigate the effect of various parameters and experimental strategies on electro‐dewatering. Migration behaviour of organic compounds and metals was also studied. Application of electrical field significantly improved the dewatering performance in comparison to experiments without electric field. Electro‐dewatering increased the DS content of the sludge from 15% to 40 % in non‐pressure applications and from 8% to 41% in pressure‐driven applications. DS contents were significantly higher than typically obtained with mechanical dewatering techniques in wastewater treatment plant. The better performance of the pressure‐driven dewatering was associated to a higher current density at the beginning and higher electric field strength later on in the experiments. The applied voltage was one of the major parameters affecting dewatering time, water removal rate and DS content of the sludge cake. By decreasing the sludge loading rate, higher electrical field strength was established between the electrodes, which has a positive effect on an increase in DS content of the final sludge cake. However interrupted voltage application had anegative impact on dewatering in this study, probably because the off‐times were too long. Other factors affecting dewatering performance were associated to the original sludge characteristics and sludge conditioning. Anaerobic digestion of the sludge with high pH buffering capacity, polymer addition and freeze/thaw conditioning had a positive impact on dewatering. The impact of pH on electro‐dewatering was related to the surface charge of the particles measured as zeta‐potential. One of the differences between electro‐dewatering and mechanical dewatering technologies is that electro‐dewatering actively removes ionic compounds from the sludge. In this study, dissolution and migration of organic compounds (such as shortchain fatty acids), macro metals (Na, K, Ca, Mg, Fe) and trace metals (Ni, Mn, Zn, Cr) was investigated. The migration of the metals depended on the fractionation and electrical field strength. These compounds may have both negative and positive impacts on the reuse and recycling of the sludge and removed water. Based on the experimental results of this study, electro‐dewatering process can be optimized in terms of dewatering time, desired DS content, power consumption and chemical usage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho apresenta uma alternativa de baixo custo e fácil instalação para o tratamento de esgotos de pequenas comunidades. O experimento foi desenvolvido no Campo Experimental da Faculdade de Engenharia Agrícola (FEAGRI/UNICAMP). O volume total de esgoto gerado na FEAGRI é de cerca de 20 m³ dia-1, sendo metade desse tratado pelos sistemas modulares. O sistema da linha (A) é constituído por um reator UASB (Upflow Anaerobic Sludge Blanket), seguido de dois filtros anaeróbios e o outro sistema, linha (B), é constituído por um reator tipo RAC (Reator Anaeróbio Compartimentado), seguido de dois filtros anaeróbios (FA). Os sistemas foram operados de dezembro de 2002 a fevereiro de 2004, totalizando 30 coletas de amostras. Observou-se que, de maneira geral, o desempenho dos sistemas foram similares e com resultados satisfatórios. As eficiências médias de remoção de Sólidos Sedimentáveis, Sólidos Suspensos Totais e DQO, observadas no sistema modular da Linha (A), foram, respectivamente, 99,58%; 94,33% e 67,30%. O sistema modular da Linha (B) apresentou remoção de 99,49%; 93,34% e 70,45% para os mesmos parâmetros. Os sistemas modulares mostraram-se adequados e viáveis para promover o tratamento sanitário do esgoto produzido em pequenas comunidades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämä työ käsittelee eri tapoja, joilla biomassasta voidaan valmistaa metanolia. Työssä käydään läpi eri valmistusreitit sekä tarkastellaan biomassaa raaka-aineena. Työhön on myös koottu joidenkin maailmalla tehtyjen tutkimusten aine- ja energiataseita. Tutkimusten pohjalta mietitään onko metanolin tuotanto liikennepolttoaineeksi tällä hetkellä taloudellisesti tai energiatehokkuudeltaan järkevää. Metanolia voidaan valmistaa biomassasta pääsääntöisesti viidellä eri tavalla. Ensimmäinen tapa on kaasuttaa biomassaa, jolloin tuotetaan raaka-kaasua. Raaka-kaasusta jalostetaan synteesikaasua, josta voidaan metanolisynteesillä valmistaa metanolia. Toinen tapa metanolin valmistamiseksi on liittää tuotanto sellunkeiton yhteyteen. Tällöin raaka-aineena olisi selluprosessissa syntyvä mustalipeä, josta metanoli voidaan erottaa. Kolmas mahdollinen valmistusprosessi on biomassan mädätys. Mädätyksessä syntyy biokaasua, josta jalostetaan synteesikaasuaja siitä edelleen metanolia. Neljäs keino metanolin valmistamiseksi biomassasta on pyrolyysi. Puun pyrolyysissä puu kuumennetaan nopeasti hapettomissa tai rajallisen hapensaannin olosuhteissa. Prosessissa syntyvästä pyrolyysiöljystä voidaan erottaa metanolia tislaamalla. Viides mahdollinen reitti metanolin valmistukselle on Fischer¬–Tropsch-synteesi. Biomassasta saatu synteesikaasu johdetaan FT-synteesiin, jossa katalyyttisesti saadaan hiilivetyjen ohella tuotettua metanolia. Biopolttoaineiden kuten metanolin valmistusprosesseja tutkitaan ja kehitetään jatkuvasti, sillä uusiutumattomat energianlähteet eivät riitä loputtomasti ja niiden aiheuttamia hiilidioksidipäästöjä halutaan vähentää. Tällä hetkellä tuotantoteknologiat eivät ole vielä tarpeeksi kehittyneet, jotta tuotanto saataisiin vastaamaan kulutusta. Metanolia ei kuitenkaan vielä voida käyttää sellaisenaan liikennepolttoaineena, joten metanolin markkinat ainakin vielä ovat sillä saralla varsin kapeat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present research was carried out at the DER/FCAV, São Paulo State University - Brazil, with the purpose of analyzing the quantity and quality of biogas produced by six types of substrates. The substrates used in the anaerobic digestion were characterized as: 1- Litter of broiler (LB); 2- Grinded broiler litter (GBL); 3- Broiler litter with wood shavings (BLWS); 4- Grinded broiler litter with wood shavings (GBLWS); 5- Broiler litter with peanut hulls (BLPH); 6- Grinded broiler litter with peanut hull (GBLPH). It was concluded from the collected data that: the (GBL) substrate showed a superior biogas accumulated production in relation to the other substrates, while the BLWS presented an inferior accumulated production; the grinded substrates showed higher quantities of accumulated biogas in relation to the non-grinded substrates, except for GBLPH, with 20.9 m³ inferior than BLPH; the period of maximum biogas production started from 45 to 60 days, declining after 120 days; at 57 days after filling up the digesters the biogas produced had levels of CH4 superior than 53%, and from 99 days all of them produced biogas with levels of CH4 superior than 70%; LB and GBL presented higher concentrations of CH4 in the biogas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high load of nitrogen present in swine wastewater is one of the biggest management challenges of the activity. The Anammox process emerges as a good alternative for biological removal of nitrogen. This study aims to acclimate sludge collected from swine effluent treatment systems to establish the Anammox process. Two sludge samples were collected at Embrapa Swine and Poultry, Concordia - SC, Brazil, one from the bottom of an inactive anaerobic pond (inoculum A) and another from an aeration tank (inoculum B). Both were acclimated until the depletion of NO3-N, being subsequently inoculated in two reactors (Reactor A - Inoculum A and Reactor B - Inoculum B). The Reactor A showed activity after 110 days of operation, while the Reactor B needed 170 days. The difference in the start-up time could be explained by the different environmental conditions to which each sludge was submitted. FISH and PCR analyses confirmed the presence of microorganisms with Anammox activity, demonstrating that the sludge of swine wastewater treatment systems is a good source of inoculum for the development of the Anammox process.