933 resultados para Unlipped channel sections
Resumo:
To clarify the pharmacological profile of the two new calcium channel blockers tiapamil and nisoldipine in humans, their acute effects as compared with those of the reference agent nifedipine were assessed in 10 normal subjects and 10 patients with essential hypertension. Blood pressure (BP), heart rate (HR), plasma and urinary catecholamine, sodium and potassium, plasma renin and aldosterone levels, and urinary prostaglandin E2 and F2 excretion rates were determined before and up to 4 or 5 h (urine values) after intravenous injection of placebo (20 ml 0.9% NaCl), tiapamil 1 mg/kg body weight, nisoldipine 6 micrograms/kg, or nifedipine 15 micrograms/kg. The four studies were performed at weekly intervals according to Latin square design. All three calcium channel blockers significantly (p less than 0.05 or lower) lowered BP and distinctly increased sodium excretion in hypertensive patients, but had only little influence on these parameters in normal subjects. HR was increased in both groups. Changes in BP and HR were maximal at 5 min and largely dissipated 3 h after drug injection. Effects on BP and HR, as well as concomitant mild increases in plasma norepinephrine and renin levels that occurred in both groups, tended to be more pronounced (about double) following nisoldipine than following tiapamil or nifedipine at the dosages given. Plasma aldosterone, epinephrine levels, and prostaglandin excretion rates were not consistently modified. These findings demonstrate that tiapamil and nisoldipine possess distinct antihypertensive properties in humans. Different chronotropic and renin-activating effects of different calcium channel blockers may be determined, at least in part, by a different influence on sympathetic activity.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
We describe two Chinese families with a mild form of the myotonia congenita due to novel chloride channel (ClCN1) mutations. In one case, heterozygous I553F and H555N mutations were found. The patient shared the I553F mutation with his healthy father, and his mother had a history of mild myotonia when she was younger. In another family, autosomal dominant myotonia congenita was due to a L844F change. The physiological effects of the mutations were examined by using the two-electrode voltage-clamp technique after expression of the channels in Xenopus oocytes. All mutations drastically shifted the voltage required for half-maximal activation, more under conditions mimicking the homozygous situation, than under conditions mimicking the heterozygous situation. The larger effect was seen in the compound heterozygous situation combining the I553F and the H555N mutations. Our data suggest that myotonia congenita caused by CLCN1 mutations in Chinese have similar variable features to those found in the West.
Resumo:
Maternal-fetal calcium (Ca(2+)) transport is crucial for fetal Ca(2+) homeostasis and bone mineralization. In this study, the physiological significance of the transient receptor potential, vanilloid 6 (TRPV6) Ca(2+) channel in maternal-fetal Ca(2+) transport was investigated using Trpv6 knockout mice. The Ca(2+) concentration in fetal blood and amniotic fluid was significantly lower in Trpv6 knockout fetuses than in wildtypes. The transport activity of radioactive Ca(2+) ((45)Ca) from mother to fetuses was 40% lower in Trpv6 knockout fetuses than in wildtypes. The ash weight was also lower in Trpv6 knockout fetuses compared with wildtype fetuses. TRPV6 mRNA and protein were mainly localized in intraplacental yolk sac and the visceral layer of extraplacental yolk sac, which are thought to be the places for maternal-fetal Ca(2+) transport in mice. These expression sites were co-localized with calbindin D(9K) in the yolk sac. In wildtype mice, placental TRPV6 mRNA increased 14-fold during the last 4 days of gestation, which coincides with fetal bone mineralization. These results provide the first in vivo evidence that TRPV6 is involved in maternal-fetal Ca(2+) transport. We propose that TRPV6 functions as a Ca(2+) entry pathway, which is critical for fetal Ca(2+) homeostasis.
Resumo:
The rate-limiting step of dietary calcium absorption in the intestine requires the brush border calcium entry channel TRPV6. The TRPV6 gene was completely sequenced in 170 renal calcium stone patients. The frequency of an ancestral TRPV6 haplotype consisting of three non-synonymous polymorphisms (C157R, M378V, M681T) was significantly higher (P = 0.039) in calcium stone formers (8.4%; derived = 502, ancestral = 46) compared to non-stone-forming individuals (5.4%; derived = 645, ancestral = 37). Mineral metabolism was investigated on four different calcium regimens: (i) free-choice diet, (ii) low calcium diet, (iii) fasting and (iv) after a 1 g oral calcium load. When patients homozygous for the derived haplotype were compared with heterozygous patients, no differences were found with respect to the plasma concentrations of 1,25-vitamin D, PTH and calcium, and the urinary excretion of calcium. In one stone-forming patient, the ancestral haplotype was found to be homozygous. This patient had absorptive hypercalciuria. We therefore expressed the ancestral protein (157R+378V+681T) in Xenopus oocytes and found a significantly enhanced calcium permeability when tested by a (45)Ca(2+) uptake assay (7.11 +/- 1.93 versus 3.61 +/- 1.01 pmol/min/oocyte for ancestral versus derived haplotype, P < 0.01). These results suggest that the ancestral gain-of-function haplotype in TRPV6 plays a role in calcium stone formation in certain forms of absorptive hypercalciuria.
Resumo:
Single-screw extrusion is one of the widely used processing methods in plastics industry, which was the third largest manufacturing industry in the United States in 2007 [5]. In order to optimize the single-screw extrusion process, tremendous efforts have been devoted for development of accurate models in the last fifty years, especially for polymer melting in screw extruders. This has led to a good qualitative understanding of the melting process; however, quantitative predictions of melting from various models often have a large error in comparison to the experimental data. Thus, even nowadays, process parameters and the geometry of the extruder channel for the single-screw extrusion are determined by trial and error. Since new polymers are developed frequently, finding the optimum parameters to extrude these polymers by trial and error is costly and time consuming. In order to reduce the time and experimental work required for optimizing the process parameters and the geometry of the extruder channel for a given polymer, the main goal of this research was to perform a coordinated experimental and numerical investigation of melting in screw extrusion. In this work, a full three-dimensional finite element simulation of the two-phase flow in the melting and metering zones of a single-screw extruder was performed by solving the conservation equations for mass, momentum, and energy. The only attempt for such a three-dimensional simulation of melting in screw extruder was more than twenty years back. However, that work had only a limited success because of the capability of computers and mathematical algorithms available at that time. The dramatic improvement of computational power and mathematical knowledge now make it possible to run full 3-D simulations of two-phase flow in single-screw extruders on a desktop PC. In order to verify the numerical predictions from the full 3-D simulations of two-phase flow in single-screw extruders, a detailed experimental study was performed. This experimental study included Maddock screw-freezing experiments, Screw Simulator experiments and material characterization experiments. Maddock screw-freezing experiments were performed in order to visualize the melting profile along the single-screw extruder channel with different screw geometry configurations. These melting profiles were compared with the simulation results. Screw Simulator experiments were performed to collect the shear stress and melting flux data for various polymers. Cone and plate viscometer experiments were performed to obtain the shear viscosity data which is needed in the simulations. An optimization code was developed to optimize two screw geometry parameters, namely, screw lead (pitch) and depth in the metering section of a single-screw extruder, such that the output rate of the extruder was maximized without exceeding the maximum temperature value specified at the exit of the extruder. This optimization code used a mesh partitioning technique in order to obtain the flow domain. The simulations in this flow domain was performed using the code developed to simulate the two-phase flow in single-screw extruders.
Resumo:
Ion impact emission cross sections for eleven transitions from the 5p56p configuration to the 5p56s configuration of neutral xenon occurring in the spectral region between 700 nm and 1000 nm have been measured experimentally. Collisions between both singly- and doublyionized xenon and neutral xenon have been studied. These cross sections are of primary use in the development of a spectrographic diagnostic for Hall effect thruster plasma. A detailed discussion of the experimental methods and the subsequent data reduction is included. The results are presented and the importance of these data for spectrographic emission models of Hall effect thruster plasmas is discussed.
Resumo:
Moisture induced distresses have been the prevalent distress type affecting the deterioration of both asphalt and concrete pavement sections. While various surface techniques have been employed over the years to minimize the ingress of moisture into the pavement structural sections, subsurface drainage components like open-graded base courses remain the best alternative in minimizing the time the pavement structural sections are exposed to saturated conditions. This research therefore focuses on assessing the performance and cost-effectiveness of pavement sections containing both treated and untreated open-graded aggregate base materials. Three common roadway aggregates comprising of two virgin aggregates and one recycled aggregate were investigated using four open-ended gradations and two binder types. Laboratory tests were conducted to determine the hydraulic, mechanical and durability characteristics of treated and untreated open-graded mixes made from these three aggregate types. Results of the experimental program show that for the same gradation and mix design types, limestone samples have the greatest drainage capacity, stability to traffic loads and resistance to degradation from environmental conditions like freeze-thaw. However, depending on the gradation and mix design used, all three aggregate types namely limestone, natural gravel and recycled concrete can meet the minimum coefficient of hydraulic conductivity required for good drainage in most pavements. Tests results for both asphalt and cement treated open-graded samples indicate that a percent air void content within the range of 15-25 will produce a treated open-graded base course with sufficient drainage capacity and also long term stability under both traffic and environmental loads. Using the new Mechanistic and Empirical Design Guide software, computer simulations of pavement performance were conducted on pavement sections containing these open-graded base aggregate base materials to determine how the MEPDG predicted pavement performance is sensitive to drainage. Using three truck traffic levels and four climatic regions, results of the computer simulations indicate that the predicted performance was not sensitive to the drainage characteristics of the open-graded base course. Based on the result of the MEPDG predicted pavement performance, the cost-effectiveness of the pavement sections with open-graded base was computed on the assumption that the increase service life experienced by these sections was attributed to the positive effects of subsurface drainage. The two cost analyses used gave two contrasting results with the one indicating that the inclusion of open-graded base courses can lead to substantial savings.
Resumo:
The experiments observe and measure the length of the annular regime in fully condensing quasi-steady (steady-in-the-mean) flows of pure FC-72 vapor in a horizontal condenser (rectangular cross-section of 2 mm height, 15 mm width, and 1 m length). The sides and top of the duct are made of clear plastic that allows flow visualization. The experimental system in which this condenser is used is able to control and achieve different quasi-steady mass flow rates, inlet pressures, and wall cooling conditions (by adjustment of the temperature and flow rate of the cooling water flowing underneath the condensing-plate). The reported correlations and measurements for the annular length are also vital information for determining the length of the annular regime and proposing extended correlation (covering many vapors and a larger parameter set than the experimentally reported version here) by ongoing independent modeling and computational simulation approach.
Resumo:
A non-intrusive interferometric measurement technique has been successfully developed to measure fluid compressibility in both gas and liquid phases via refractive index (RI) changes. The technique, consisting of an unfocused laser beam impinging a glass channel, can be used to separate and quantify cell deflection, fluid flow rates, and pressure variations in microchannels. Currently in fields such as microfluidics, pressure and flow rate measurement devices are orders of magnitude larger than the channel cross-sections making direct pressure and fluid flow rate measurements impossible. Due to the non-intrusive nature of this technique, such measurements are now possible, opening the door for a myriad of new scientific research and experimentation. This technique, adapted from the concept of Micro Interferometric Backscatter Detection (MIBD), boasts the ability to provide comparable sensitivities in a variety of channel types and provides quantification capability not previously demonstrated in backscatter detection techniques. Measurement sensitivity depends heavily on experimental parameters such as beam impingement angle, fluid volume, photodetector sensitivity, and a channel’s dimensional tolerances. The current apparatus readily quantifies fluid RI changes of 10-5 refractive index units (RIU) corresponding to pressures of approximately 14 psi and 1 psi in water and air, respectively. MIBD reports detection capability as low as 10-9 RIU and the newly adapted technique has the potential to meet and exceed this limit providing quantification in the place of detection. Specific device sensitivities are discussed and suggestions are provided on how the technique may be refined to provide optimal quantification capabilities based on experimental conditions.
Resumo:
The term, "insoluble residue," as used in this report is that portion of the original rock sample remaining after the sample has been digested by a mixture of one part hydrocloric acid and two parts water. The remains or insoluble residue from this acid treatment may vary from nothing to I00 percent.
Resumo:
We have quantitated the degree of structural preservation in cryo-sections of a vitrified biological specimen. Previous studies have used sections of periodic specimens to assess the resolution present, but preservation before sectioning was not assessed and so the damage due particularly to cutting was not clear. In this study large single crystals of lysozyme were vitrified and from these X-ray diffraction patterns extending to better than 2.1A were obtained. The crystals were high pressure frozen in 30% dextran, and cryo-sectioned using a diamond knife. In the best case, preservation to a resolution of 7.9A was shown by electron diffraction, the first observation of sub-nanometre structural preservation in a vitreous section.