984 resultados para UNDOPED INP
Resumo:
We compare the effect of organic (Tiron (R)) and inorganic (Mn(11)) additives on the low temperature (< 600 degrees C) densification of the sol-gel dip-coated SnO2 films. The structural and compositional properties of the samples were investigated by X-ray reflectometry (XRR), X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). The results suggest that the replacement of hydroxyl groups at the particle surface by Tiron (R) reduces the level of agglomeration of the sol, increasing the particles packing and the apparent density of the coatings. Undoped and Mn-doped films drawn from a Tiron (R) containing suspension show after firing at 500 degrees C a porosity reduction of 12 and 8.6%, respectively. The porosity decrease is less pronounced (4.3%) for the film without additives. Both XAS and XPS data show the presence of trivalent manganese. The formation of a non-homogeneous solid solution characterised by the presence of Mn(111) replacing tin atom near to the crystallite surface was evidenced by XAS. Additionally, XPS results reveal the presence of metallic Sn at the surface of films containing Tirono. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Buried two-dimensional arrays of InP dots were used as a template for the lateral ordering of self-assembled quantum dots. The template strain field can laterally organize compressive (InAs) as well as tensile (GaP) self-assembled nanostructures in a highly ordered square lattice. High-resolution transmission electron microscopy measurements show that the InAs dots are vertically correlated to the InP template, while the GaP dots are vertically anti-correlated, nucleating in the position between two buried InP dots. Finite InP dot size effects are observed to originate InAs clustering but do not affect GaP dot nucleation. The possibility of bilayer formation with different vertical correlations suggests a new path for obtaining three-dimensional pseudocrystals.
Resumo:
In this study undoped and Cr, Sb or Mo doped TiO(2) were synthesized by polymeric precursor method and characterized by X-ray diffraction, UV-VIS spectroscopy, infrared spectroscopy and thermogravimetry (TG). The TG curves showed a continuous mass loss assigned to the hydroxyl elimination and Cr(6+) reduction. Doped TiO(2) samples showed a higher mass loss assigned to water and gas elimination at lower temperatures. In these doped materials a decrease in the anatase-rutile phase transition temperature was observed. After calcination at 1,000 A degrees C, rutile was obtained as a single phase material without the presence of Cr(6+).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pre-resonant Raman effect of chromate ion, CrO2- 4, was observed in a metasilicate glass with molar composition 2Na2O · 1CaO · 3SiO2 containing 1.0 wt% of Cr2O3. Raman spectra were measured by the conventional 90° scattering geometry and by the microprobe Raman spectroscopic techniques. The presence of chromate ions in the glass is favoured by the glass composition and oxidizing conditions during the glass melting, and they are responsible for optical absorption bands at 370 and 250 nm. Raman spectrum of the undoped glass presents bands at 625, 860 and 980 cm-1, and the presence of chromate ions gives rise to additional bands at 365, 850 and a shoulder at 890 cm-1. An enhancement of the 850 cm-1 Raman band is observed with decreasing laser exciting wavelength. The exciting frequency dependence of the intensity of this band is discussed in terms of theoretical models given in the literature.
Resumo:
Space-charge-limited currents measurements have been carried out on undoped amorphous poly p-phenylene sulfide. The scaling law is checked for different samples with varying thickness, and J-V data analyzed. The position of the quasi-Fermi level and the density of states was obtained.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The preparation of spherical Y2O2S and Y2O2S:Eu particles using a solid-gas reaction of monodispersed precursors with elemental sulfur vapor under an argon atmosphere has been investigated. The precursors, undoped and doped yttrium basic carbonates, are synthesized by aging a stock solution containing the respective cation chloride and urea at 82-84 °C. Y2O2S and Y2O2S:Eu were characterized in terms of their composition, crystallinity and morphology by chemical analysis, X-ray powder diffraction (XRD), IR spectroscopy, and scanning electron microscopy (SEM). The Eu-doped oxysulfide was also characterized by atomic absorption spectrophotometry and luminescence spectroscopy. The spherical morphology of oxysulfide products and of basic carbonate precursors suggests a topotatic inter-relationship between both compounds.
Resumo:
Starting from aqueous colloidal suspensions, undoped and Nb5+ doped SnO2 thin films have been prepared by using the dip-coating sol gel process. X-ray diffraction results show that films are polycrystalline with crystallites of average size1-4nm. Decreasing the thickness of the films and increasing the Nb5+ concentration limits the crystallite size growth during firing. Complex impedance measurements reveal capacitive and resistive effects between adjacent crystallites or grains, characteristic of electrical potential barriers. The transfer of charge throughout these barriers determines the macroscopic electrical resistance of the layer. The analysis of the optical absorption spectra shows that the samples present more than 80% of their transmittance in the visible region and the value of the band gap energy increases with decreasing crystallite size. © 1997 Chapman & Hall.
Resumo:
Thin films of undoped and Sb-doped (2 atg%) SnO2 have been prepared by sol-gel dip-coating technique on borosilicate glasses. Variation of photoconductivity excitation with wavelength and optical absorption indicate indirect bandgap transition with energy of ≅ 3.5 eV. Conductance as function of temperature indicates two levels of capture with 39 and 81 meV as activation energies, which may be related to an Sb donor and oxygen vacancy respectively. Electron trapping by these levels are practically destroyed by UV photoexcitation (305 nm) and heating in vacuum to 200°C. Gas analysis using a mass spectrometer indicates an oxygen related level, which may not be desorbed in the simpler O2 form.
Resumo:
Thin films of undoped and Sb-doped SnO2 have been prepared by a sol-gel dip-coating technique. For the high doping level (2-3 mol% Sb) n-type degenerate conduction is expected, however, measurements of resistance as a function of temperature show that doped samples exhibit strong electron trapping, with capture levels at 39 and 81 meV. Heating in a vacuum and irradiation with UV monochromatic light (305 nm) improve the electrical characteristics, decreasing the carrier capture at low temperature. This suggests an oxygen related level, which can be eliminated by a photodesorption process. Absorption spectral dependence indicates an indirect bandgap transition with Eg ≅ 3.5 eV. Current-voltage characteristics indicate a thermionic emission mechanism through interfacial states.
Resumo:
Undoped and indium-doped Zinc oxide (ZnO) solid films were deposited by the pyrosol process at 450°C on glass substrates from solutions where In/Zn ratio was 2, 5, and 10 at.%. Electrical measurements performed at room temperature show that the addition of indium changes the resistance of the films. The resistivities of doped films are less than non-doped ZnO films by one to two orders of magnitude depending on the dopant concentration in the solution. Preferential orientation of the films with the c-axis perpendicular to the substrate was detected by X-ray diffraction and polarized extended X-ray absorption fine structures measurements at the Zn K edge. This orientation depends on the indium concentration in the starting solution. The most textured films were obtained for solutions where In/Zn ratio was 2 and 5 at.%. When In/Zn = 10 at.%, the films had a nearly random orientation of crystallites. Evidence of the incorporation of indium in the ZnO lattice was obtained from extended X-ray absorption fine structures at the In and Zn K edges. The structural analysis of the least resistive film (Zn/In = 5 at.%) shows that In substitutes Zn in the wurtzite structure. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Piezoelectric composite, made from ferroelectric ceramic lead zirconate titanate (PZT) and vegetable based polyurethane (PU) polymer, was doped with a semiconductor filler, graphite. The resulting composite (PZT/C/PU) with 49/1/50- vol. % composition could be poled at lower field and shorter time due to the increased conductivity of the polymer phase following the introduction of graphite. The PZT/C/PU composite showed higher pyroelectric coefficient in comparison with the undoped PZT/PU composite with 50/50-vol. % composition. Also, the PZT/C/PU composite has shown the ability to detect both extensional and flexural modes of simulated acoustic emission (AE) at a distance up to 8.0 m from the source, thus indicating that it may be used for detection of structural damages.