974 resultados para Two-state Potts model
Resumo:
The aim of this paper is to analyze the knowledge transfer in the production of structural components of two aircraft:Q400 and Global Express of Bombardier Aerospace Company, Querétaro. Bombardier Aerospace is a pioneer company in the aviation sector in Mexico, and the third largest civil aircraft manufacturer. In 2005, Bombardier decided to invest in Mexico, creating Bombardier Aerospace de Mexico S. A. C. V. and transferring production lines from Japan and Toronto to Queretaro. The relocation strategy of both plants aims to reduce modular and general production costs facing other competitors. The relocation has been supported by the State Government funds, through a trust and the creation of Queretaro aerospace cluster. Among various benefits, the State of Queretaro donated seventy-eight acres of land where the Queretaro International Airport (QIA) and a training centre will be built to promote the development of this sector. The interest in this research is to analyze and describe the transfer of knowledge to the production of structural components of both aircraft models, thanks to the results of productivity and internal and external factors which have contributed along with this transfer
Resumo:
Los aportes teóricos y aplicados de la complejidad en economía han tomado tantas direcciones y han sido tan frenéticos en las últimas décadas, que no existe un trabajo reciente, hasta donde conocemos, que los compile y los analice de forma integrada. El objetivo de este proyecto, por tanto, es desarrollar un estado situacional de las diferentes aplicaciones conceptuales, teóricas, metodológicas y tecnológicas de las ciencias de la complejidad en la economía. Asimismo, se pretende analizar las tendencias recientes en el estudio de la complejidad de los sistemas económicos y los horizontes que las ciencias de la complejidad ofrecen de cara al abordaje de los fenómenos económicos del mundo globalizado contemporáneo.
Resumo:
This work seeks to reconstruct the dynamics of the agreements and disagreements between the State and the indigenous peoples in Ecuador, emphasising particularly on two key elements: first, the indigenous peoples participation and exercise of their political rights, in particular the right to self-government and autonomy within their jurisdictions; and secondly, indigenous peoples’ degree of direct influence on public policies’ formulation and implementation, specially those directly affecting their territories, including the exploitation of natural resources. In Ecuador, during this historical period, the state has gone through three major moments in its relationship with indigenous peoples: neo - indigenism associated to developmentalism (1980-1984); multiculturalism associated to neoliberalism (1984- 2006) as one of the dominant trends over the period; and the crisis of neoliberalism and the search for national diversity and interculturalism associated to post- neoliberalism (2007-2013). Each has had a particular connotation, as to the scope and methods to respond to indigenous demands. In this context, this research aims to answer the central question: how has the Ecuadorian State met the demands of the indigenous movement in the last three decades, and how has it ensured the validity of their gradually recognized rights? And how and to what extent by doing so, it contradicts and alters the existing economic model based on the extraction of primary resources?
Resumo:
The constant-density Charney model describes the simplest unstable basic state with a planetary-vorticity gradient, which is uniform and positive, and baroclinicity that is manifest as a negative contribution to the potential-vorticity (PV) gradient at the ground and positive vertical wind shear. Together, these ingredients satisfy the necessary conditions for baroclinic instability. In Part I it was shown how baroclinic growth on a general zonal basic state can be viewed as the interaction of pairs of ‘counter-propagating Rossby waves’ (CRWs) that can be constructed from a growing normal mode and its decaying complex conjugate. In this paper the normal-mode solutions for the Charney model are studied from the CRW perspective.
Clear parallels can be drawn between the most unstable modes of the Charney model and the Eady model, in which the CRWs can be derived independently of the normal modes. However, the dispersion curves for the two models are very different; the Eady model has a short-wave cut-off, while the Charney model is unstable at short wavelengths. Beyond its maximum growth rate the Charney model has a neutral point at finite wavelength (r=1). Thereafter follows a succession of unstable branches, each with weaker growth than the last, separated by neutral points at integer r—the so-called ‘Green branches’. A separate branch of westward-propagating neutral modes also originates from each neutral point. By approximating the lower CRW as a Rossby edge wave and the upper CRW structure as a single PV peak with a spread proportional to the Rossby scale height, the main features of the ‘Charney branch’ (0
Resumo:
Integrations of a fully-coupled climate model with and without flux adjustments in the equatorial oceans are performed under 2×CO2 conditions to explore in more detail the impact of increased greenhouse gas forcing on the monsoon-ENSO system. When flux adjustments are used to correct some systematic model biases, ENSO behaviour in the modelled future climate features distinct irregular and periodic (biennial) regimes. Comparison with the observed record yields some consistency with ENSO modes primarily based on air-sea interaction and those dependent on basinwide ocean wave dynamics. Simple theory is also used to draw analogies between the regimes and irregular (stochastically forced) and self-excited oscillations respectively. Periodic behaviour is also found in the Asian-Australian monsoon system, part of an overall biennial tendency of the model under these conditions related to strong monsoon forcing and increased coupling between the Indian and Pacific Oceans. The tropospheric biennial oscillation (TBO) thus serves as a useful descriptor for the coupled monsoon-ENSO system in this case. The presence of obvious regime changes in the monsoon-ENSO system on interdecadal timescales, when using flux adjustments, suggests there may be greater uncertainty in projections of future climate, although further modelling studies are required to confirm the realism and cause of such changes.
Resumo:
The impact of doubled CO2 concentration on the Asian summer monsoon is studied using a coupled ocean-atmosphere model. Both the mean seasonal precipitation and interannual monsoon variability are found to increase in the future climate scenario presented. Systematic biases in current climate simulations of the coupled system prevent accurate representation of the monsoon-ENSO teleconnection, of prime importance for seasonal prediction and for determining monsoon interannual variability. By applying seasonally varying heat flux adjustments to the tropical Pacific and Indian Ocean surface in the future climate simulation, some assessment can be made of the impact of systematic model biases on future climate predictions. In simulations where the flux adjustments are implemented, the response to climate change is magnified, with the suggestion that systematic biases may be masking the true impact of increased greenhouse gas forcing. The teleconnection between ENSO and the Asian summer monsoon remains robust in the future climate, although the Indo-Pacific takes on more of a biennial character for long periods of the flux-adjusted simulation. Assessing the teleconnection across interdecadal timescales shows wide variations in its amplitude, despite the absence of external forcing. This suggests that recent changes in the observed record cannot be distinguished from internal variations and as such are not necessarily related to climate change.
Resumo:
Resumo:
Investigation of preferred structures of planetary wave dynamics is addressed using multivariate Gaussian mixture models. The number of components in the mixture is obtained using order statistics of the mixing proportions, hence avoiding previous difficulties related to sample sizes and independence issues. The method is first applied to a few low-order stochastic dynamical systems and data from a general circulation model. The method is next applied to winter daily 500-hPa heights from 1949 to 2003 over the Northern Hemisphere. A spatial clustering algorithm is first applied to the leading two principal components (PCs) and shows significant clustering. The clustering is particularly robust for the first half of the record and less for the second half. The mixture model is then used to identify the clusters. Two highly significant extratropical planetary-scale preferred structures are obtained within the first two to four EOF state space. The first pattern shows a Pacific-North American (PNA) pattern and a negative North Atlantic Oscillation (NAO), and the second pattern is nearly opposite to the first one. It is also observed that some subspaces show multivariate Gaussianity, compatible with linearity, whereas others show multivariate non-Gaussianity. The same analysis is also applied to two subperiods, before and after 1978, and shows a similar regime behavior, with a slight stronger support for the first subperiod. In addition a significant regime shift is also observed between the two periods as well as a change in the shape of the distribution. The patterns associated with the regime shifts reflect essentially a PNA pattern and an NAO pattern consistent with the observed global warming effect on climate and the observed shift in sea surface temperature around the mid-1970s.
Resumo:
The improved empirical understanding of silt facies in Holocene coastal sequences provided by such as diatom, foraminifera, ostracode and testate amoebae analysis, combined with insights from quantitative stratigraphic and hydraulic simulations, has led to an inclusive, integrated model for the palaeogeomorphology, stratigraphy, lithofacies and biofacies of northwest European Holocene coastal lowlands in relation to sea-level behaviour. The model covers two general circumstances and is empirically supported by a range of field studies in the Holocene deposits of a number of British estuaries, particularly, the Severn. Where deposition was continuous over periods of centuries to millennia, and sea level fluctuated about a rising trend, the succession consists of repeated cycles of silt and peat lithofacies and biofacies in which series of transgressive overlaps (submergence sequences) alternate with series of regressive overlaps (emergence sequences) in association with the waxing and waning of tidal creek networks. Environmental and sea-level change are closely coupled, and equilibrium and secular pattern is of the kind represented ideally by a closed limit cycle. In the second circumstance, characteristic of unstable wetland shores and generally affecting smaller areas, coastal erosion ensures that episodes of deposition in the high intertidal zone last no more than a few centuries. The typical response is a series of regressive overlaps (emergence sequence) in erosively based high mudflat and salt-marsh silts that record, commonly as annual banding, exceptionally high deposition rates and a state of strong disequilibrium. Environmental change, including creek development, and sea-level movement are uncoupled. Only if deposition proceeds for a sufficiently long period, so that marshes mature, are equilibrium and close coupling regained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The question of whether and how tropical Indian Ocean dipole or zonal mode (IOZM) interannual variability is independent of El Nino-Southern Oscillation (ENSO) variability in the Pacific is addressed in a comparison of twin 200-yr runs of a coupled climate model. The first is a reference simulation, and the second has ENSO-scale variability suppressed with a constraint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO, and the composite evolution of the main anomalies in the Indian Ocean in the two simulations is virtually identical. Its growth depends on a positive feedback between anomalous equatorial easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response to the subsequently reduced convection. Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circulation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward penetration of the Southern Hemisphere southeasterly trades. This situation grows out of cooler sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforcement of the late austral summer winds. The second trigger is a consequence of a zonal shift in the center of convection associated with a developing El Nino, a Walker cell anomaly. The first trigger is the only one present in the constrained simulation and is similar to the evolution of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Nino state. The presence of these two triggers-the first independent of ENSO and the second phase locking the IOZM to El Nino-allows an understanding of both the existence of IOZM events when Pacific conditions are neutral and the significant correlation between the IOZM and El Nino.
Resumo:
We develop the linearization of a semi-implicit semi-Lagrangian model of the one-dimensional shallow-water equations using two different methods. The usual tangent linear model, formed by linearizing the discrete nonlinear model, is compared with a model formed by first linearizing the continuous nonlinear equations and then discretizing. Both models are shown to perform equally well for finite perturbations. However, the asymptotic behaviour of the two models differs as the perturbation size is reduced. This leads to difficulties in showing that the models are correctly coded using the standard tests. To overcome this difficulty we propose a new method for testing linear models, which we demonstrate both theoretically and numerically. © Crown copyright, 2003. Royal Meteorological Society
Resumo:
The modelled El Nino-mean state-seasonal cycle interactions in 23 coupled ocean-atmosphere GCMs, including the recent IPCC AR4 models, are assessed and compared to observations and theory. The models show a clear improvement over previous generations in simulating the tropical Pacific climatology. Systematic biases still include too strong mean and seasonal cycle of trade winds. El Nino amplitude is shown to be an inverse function of the mean trade winds in agreement with the observed shift of 1976 and with theoretical studies. El Nino amplitude is further shown to be an inverse function of the relative strength of the seasonal cycle. When most of the energy is within the seasonal cycle, little is left for inter-annual signals and vice versa. An interannual coupling strength (ICS) is defined and its relation with the modelled El Nino frequency is compared to that predicted by theoretical models. An assessment of the modelled El Nino in term of SST mode (S-mode) or thermocline mode (T-mode) shows that most models are locked into a S-mode and that only a few models exhibit a hybrid mode, like in observations. It is concluded that several basic El Nino-mean state-seasonal cycle relationships proposed by either theory or analysis of observations seem to be reproduced by CGCMs. This is especially true for the amplitude of El Nino and is less clear for its frequency. Most of these relationships, first established for the pre-industrial control simulations, hold for the double and quadruple CO2 stabilized scenarios. The models that exhibit the largest El Nino amplitude change in these greenhouse gas (GHG) increase scenarios are those that exhibit a mode change towards a T-mode (either from S-mode to hybrid or hybrid to T-mode). This follows the observed 1976 climate shift in the tropical Pacific, and supports the-still debated-finding of studies that associated this shift to increased GHGs. In many respects, these models are also among those that best simulate the tropical Pacific climatology (ECHAM5/MPI-OM, GFDL-CM2.0, GFDL-CM2.1, MRI-CGM2.3.2, UKMO-HadCM3). Results from this large subset of models suggest the likelihood of increased El Nino amplitude in a warmer climate, though there is considerable spread of El Nino behaviour among the models and the changes in the subsurface thermocline properties that may be important for El Nino change could not be assessed. There are no clear indications of an El Nino frequency change with increased GHG.