995 resultados para Tissue uptake


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Lipoprotein lipase (LPL) is anchored at the vascular endothelium through interaction with heparan sulfate. It is not known how this enzyme is turned over but it has been suggested that it is slowly released into blood and then taken up and degraded in the liver. Heparin releases the enzyme into the circulating blood. Several lines of evidence indicate that this leads to accelerated flux of LPL to the liver and a temporary depletion of the enzyme in peripheral tissues. RESULTS: Rat livers were found to contain substantial amounts of LPL, most of which was catalytically inactive. After injection of heparin, LPL mass in liver increased for at least an hour. LPL activity also increased, but not in proportion to mass, indicating that the lipase soon lost its activity after being bound/taken up in the liver. To further study the uptake, bovine LPL was labeled with 125I and injected. Already two min after injection about 33 % of the injected lipase was in the liver where it initially located along sinusoids. With time the immunostaining shifted to the hepatocytes, became granular and then faded, indicating internalization and degradation. When heparin was injected before the lipase, the initial immunostaining along sinusoids was weaker, whereas staining over Kupffer cells was enhanced. When the lipase was converted to inactive before injection, the fraction taken up in the liver increased and the lipase located mainly to the Kupffer cells. CONCLUSIONS: This study shows that there are heparin-insensitive binding sites for LPL on both hepatocytes and Kupffer cells. The latter may be the same sites as those that mediate uptake of inactive LPL. The results support the hypothesis that turnover of endothelial LPL occurs in part by transport to and degradation in the liver, and that this transport is accelerated after injection of heparin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report two unrelated patients with a multisystem disease involving liver, eye, immune system, connective tissue, and bone, caused by biallelic mutations in the neuroblastoma amplified sequence (NBAS) gene. Both presented as infants with recurrent episodes triggered by fever with vomiting, dehydration, and elevated transaminases. They had frequent infections, hypogammaglobulinemia, reduced natural killer cells, and the Pelger-Huët anomaly of their granulocytes. Their facial features were similar with a pointed chin and proptosis; loose skin and reduced subcutaneous fat gave them a progeroid appearance. Skeletal features included short stature, slender bones, epiphyseal dysplasia with multiple phalangeal pseudo-epiphyses, and small C1-C2 vertebrae causing cervical instability and myelopathy. Retinal dystrophy and optic atrophy were present in one patient. NBAS is a component of the synthaxin-18 complex and is involved in nonsense-mediated mRNA decay control. Putative loss-of-function mutations in NBAS are already known to cause disease in humans. A specific founder mutation has been associated with short stature, optic nerve atrophy and Pelger-Huët anomaly of granulocytes (SOPH) in the Siberian Yakut population. A more recent report associates NBAS mutations with recurrent acute liver failure in infancy in a group of patients of European descent. Our observations indicate that the phenotypic spectrum of NBAS deficiency is wider than previously known and includes skeletal, hepatic, metabolic, and immunologic aspects. Early recognition of the skeletal phenotype is important for preventive management of cervical instability. © 2015 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS: The purpose of the present study was to compare the direct renin inhibitor aliskiren to the diuretic hydrochlorothiazide (HCTZ) in their ability to modulate renal tissue oxygenation in hypertensive patients. METHODS: 24 patients were enrolled in this randomized prospective study and 20 completed the protocol. Patients were randomly assigned to receive either aliskiren 150-300 mg/d or HCTZ 12.5 - 25 mg/d for 8 weeks. Renal oxygenation was measured by BOLD-MRI at weeks 0 and 8. BOLD-MRI was also performed before and after an i.v. injection of 20 mg furosemide at week 0 and at week 8. BOLD-MRI data were analyzed by measuring the oxygenation in 12 computed layers of the kidney enabling to asses renal oxygenation according to the depth within the kidney and by the classical method of regions of interest (ROI). RESULTS: The classical ROI analysis of the data showed no difference between the groups at week 8. The analysis of renal oxygenation according to the 12 layers method shows no significant difference between aliskiren and HCTZ at week 8 before administration of furosemide. However, within group analyses show that aliskiren slightly but not significantly increased oxygenation in the cortex and decreased medullary oxygenation whereas HCTZ induced a significant overall decrease in renal tissue oxygenation. With the same method of analysis we observed that the response to furosemide was unchanged in the HCTZ group at week 8 but was characterized by an increase in both cortical and medullary oxygenation in aliskiren-treated patients. Patients responding to aliskiren and HCTZ by a fall in systolic blood pressure of >10 mmHg improved their renal tissue oxygenation when compared to non-responders. CONCLUSION: With the classical method of evaluation using regions no difference were found between aliskiren and HCTZ on renal tissue oxygenation after 8 weeks. In contrast, with our new method that takes into account the entire kidney, within group analyses show that aliskiren slightly increases cortical and medullary renal tissue oxygenation in hypertensive patients whereas HCTZ decreases significantly renal oxygenation at trough.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimation of human oxygen uptake (V˙o2) during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human V˙o2 during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its V˙o2 prediction accuracy. Ten healthy male participants' (age 19-48 years) were recruited and their steady-state V˙o2 was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). V˙o2 was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of V˙o2. Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal V˙o2 during exercise (mean bias 1.9 vs. 3.3 mL O2 kg(-1) min(-1)) but it did not affect the accuracy for prediction of maximal V˙o2 (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human V˙o2 during cycling exercise, and it should be considered when predicting oxygen consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. In native heart, pacing cells generate electrical stimuli that spread throughout the heartcausing cell membrane depolarization and activation of contractile apparatus. We ought to examine whether electricalstimulation of adipose tissue-derived progenitor cells (ATDPCs) exerts phenotypic and genetic changes that enhance theircardiomyogenic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncoupling protein-3 (UCP3) is a member of the mitochondrial carrier family expressed preferentially in skeletal muscle and heart. It appears to be involved in metabolic handling of fatty acids in a way that minimizes excessive production of reactive oxygen species. Fatty acids are powerful regulators of UCP3 gene transcription. We have found that the role of peroxisome proliferator-activated receptor-α (PPARα) on the control of UCP3 gene expression depends on the tissue and developmental stage. In adults, UCP3 mRNA expression is unaltered in skeletal muscle from PPARα-null mice both in basal conditions and under the stimulus of starvation. In contrast, UCP3 mRNA is down-regulated in adult heart both in fed and fasted PPARα-null mice. This occurs despite the increased levels of free fatty acids caused by fasting in PPARα-null mice. In neonates, PPARα-null mice show impaired UCP3 mRNA expression in skeletal muscle in response to milk intake, and this is not a result of reduced free fatty acid levels. The murine UCP3 promoter is activated by fatty acids through either PPARα or PPARδ but not by PPARγ or retinoid X receptor alone. PPARδ-dependent activation could be a potential compensatory mechanism to ensure appropriate expression of UCP3 gene in adult skeletal muscle in the absence of PPARα. However, among transcripts from other PPARα and PPARδ target genes, only those acutely induced by milk intake in wild-type neonates were altered in muscle or heart from PPARα-null neonates. Thus, PPARα-dependent regulation is required for appropriate gene regulation of UCP3 as part of the subset of fatty-acid-responsive genes in neonatal muscle and heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focal epilepsy is increasingly recognized as the result of an altered brain network, both on the structural and functional levels and the characterization of these widespread brain alterations is crucial for our understanding of the clinical manifestation of seizure and cognitive deficits as well as for the management of candidates to epilepsy surgery. Tractography based on Diffusion Tensor Imaging allows non-invasive mapping of white matter tracts in vivo. Recently, diffusion spectrum imaging (DSI), based on an increased number of diffusion directions and intensities, has improved the sensitivity of tractography, notably with respect to the problem of fiber crossing and recent developments allow acquisition times compatible with clinical application. We used DSI and parcellation of the gray matter in regions of interest to build whole-brain connectivity matrices describing the mutual connections between cortical and subcortical regions in patients with focal epilepsy and healthy controls. In addition, the high angular and radial resolution of DSI allowed us to evaluate also some of the biophysical compartment models, to better understand the cause of the changes in diffusion anisotropy. Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Transmission of mucosal pathogens relies on their ability to bind to the surfaces of epithelial cells, to cross this thin barrier, and to gain access to target cells and tissues, leading to systemic infection. This implies that pathogen-specific immunity at mucosal sites is critical for the control of infectious agents using these routes to enter the body. Although mucosal delivery would ensure the best onset of protective immunity, most of the candidate vaccines are administered through the parenteral route. OBJECTIVE: The present study evaluates the feasibility of delivering the chemically bound p24gag (referred to as p24 in the text) HIV antigen through secretory IgA (SIgA) in nasal mucosae in mice. RESULTS: We show that SIgA interacts specifically with mucosal microfold cells present in the nasal-associated lymphoid tissue. p24-SIgA complexes are quickly taken up in the nasal cavity and selectively engulfed by mucosal dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin-positive dendritic cells. Nasal immunization with p24-SIgA elicits both a strong humoral and cellular immune response against p24 at the systemic and mucosal levels. This ensures effective protection against intranasal challenge with recombinant vaccinia virus encoding p24. CONCLUSION: This study represents the first example that underscores the remarkable potential of SIgA to serve as a carrier for a protein antigen in a mucosal vaccine approach targeting the nasal environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To analyze standardized uptake values (SUVs) using three different tube current intensities for attenuation correction on 18FNaF PET/CT scans. Materials and Methods: A total of 254 18F-NaF PET/CT studies were analyzed using 10, 20 and 30 mAs. The SUVs were calculated in volumes of interest (VOIs) drawn on three skeletal regions, namely, right proximal humeral diaphysis (RH), right proximal femoral diaphysis (RF), and first lumbar vertebra (LV1) in a total of 712 VOIs. The analyses covered 675 regions classified as normal (236 RH, 232 RF, and 207 LV1). Results: Mean SUV for each skeletal region was 3.8, 5.4 and 14.4 for RH, RF, and LV1, respectively. As the studies were grouped according to mAs value, the mean SUV values were 3.8, 3.9 and 3.7 for 10, 20 and 30 mAs, respectively, in the RH region; 5.4, 5.5 and 5.4 for 10, 20 and 30 mAs, respectively, in the RF region; 13.8, 14.9 and 14.5 for 10, 20 and 30 mAs, respectively, in the LV1 region. Conclusion: The three tube current values yielded similar results for SUV calculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mapping perturbed molecular circuits that underlie complex diseases remains a great challenge. We developed a comprehensive resource of 394 cell type- and tissue-specific gene regulatory networks for human, each specifying the genome-wide connectivity among transcription factors, enhancers, promoters and genes. Integration with 37 genome-wide association studies (GWASs) showed that disease-associated genetic variants-including variants that do not reach genome-wide significance-often perturb regulatory modules that are highly specific to disease-relevant cell types or tissues. Our resource opens the door to systematic analysis of regulatory programs across hundreds of human cell types and tissues (http://regulatorycircuits.org).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Objective: To assess the cutoff values established by ROC curves to classify18F-NaF uptake as normal or malignant. Materials and Methods: PET/CT images were acquired 1 hour after administration of 185 MBq of18F-NaF. Volumes of interest (VOIs) were drawn on three regions of the skeleton as follows: proximal right humerus diaphysis (HD), proximal right femoral diaphysis (FD) and first vertebral body (VB1), in a total of 254 patients, totalling 762 VOIs. The uptake in the VOIs was classified as normal or malignant on the basis of the radiopharmaceutical distribution pattern and of the CT images. A total of 675 volumes were classified as normal and 52 were classified as malignant. Thirty-five VOIs classified as indeterminate or nonmalignant lesions were excluded from analysis. The standardized uptake value (SUV) measured on the VOIs were plotted on an ROC curve for each one of the three regions. The area under the ROC (AUC) as well as the best cutoff SUVs to classify the VOIs were calculated. The best cutoff values were established as the ones with higher result of the sum of sensitivity and specificity. Results: The AUCs were 0.933, 0.889 and 0.975 for UD, FD and VB1, respectively. The best SUV cutoffs were 9.0 (sensitivity: 73%; specificity: 99%), 8.4 (sensitivity: 79%; specificity: 94%) and 21.0 (sensitivity: 93%; specificity: 95%) for UD, FD and VB1, respectively. Conclusion: The best cutoff value varies according to bone region of analysis and it is not possible to establish one value for the whole body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach to mammographic mass detection is presented in this paper. Although different algorithms have been proposed for such a task, most of them are application dependent. In contrast, our approach makes use of a kindred topic in computer vision adapted to our particular problem. In this sense, we translate the eigenfaces approach for face detection/classification problems to a mass detection. Two different databases were used to show the robustness of the approach. The first one consisted on a set of 160 regions of interest (RoIs) extracted from the MIAS database, being 40 of them with confirmed masses and the rest normal tissue. The second set of RoIs was extracted from the DDSM database, and contained 196 RoIs containing masses and 392 with normal, but suspicious regions. Initial results demonstrate the feasibility of using such approach with performances comparable to other algorithms, with the advantage of being a more general, simple and cost-effective approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new approach to model and classify breast parenchymal tissue. Given a mammogram, first, we will discover the distribution of the different tissue densities in an unsupervised manner, and second, we will use this tissue distribution to perform the classification. We achieve this using a classifier based on local descriptors and probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature. We studied the influence of different descriptors like texture and SIFT features at the classification stage showing that textons outperform SIFT in all cases. Moreover we demonstrate that pLSA automatically extracts meaningful latent aspects generating a compact tissue representation based on their densities, useful for discriminating on mammogram classification. We show the results of tissue classification over the MIAS and DDSM datasets. We compare our method with approaches that classified these same datasets showing a better performance of our proposal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioactive glasses are surface-active ceramic materials which support and accelerate bone growth in the body. During the healing of a bone fracture or a large bone defect, fixation is often needed. The aim of this thesis was to determine the dissolution behaviour and biocompatibility of a composite consisting of poly(ε-caprolactone-co-DL-lactide) and bioactive glass (S53P4). In addition the applicability as an injectable material straight to a bone defect was assessed. In in vitro tests the dissolution behaviour of plain copolymer and composites containing bioactive glass granules was evaluated, as well as surface reactivity and the material’s capability to form apatite in simulated body fluid (SBF). The human fibroblast proliferation was tested on materials in cell culture. In in vivo experiments, toxicological tests, material degradation and tissue reactions were tested both in subcutaneous space and in experimental bone defects. The composites containing bioactive glass formed a unified layer of apatite on their surface in SBF. The size and amount of glass granules affected the degradation of polymer matrix, as well the material’s surface reactivity. In cell culture on the test materials the human gingival fibroblasts proliferated and matured faster compared with control materials. In in vitro tests a connective tissue capsule was formed around the specimens, and became thinner in the course of time. Foreign body cell reactions in toxicological tests were mild. In experimental bone defects the specimens with a high concentration of small bioactive glass granules (<45 μm) formed a dense apatite surface layer that restricted the bone ingrowth to material. The range of large glass granules (90-315 μm) with high concentrations formed the best bonding with bone, but slow degradation on the copolymer restricted the bone growth only in the superficial layers. In these studies, the handling properties of the material proved to be good and tissue reactions were mild. The reactivity of bioactive glass was retained inside the copolymer matrix, thus enabling bone conductivity with composites. However, the copolymer was noticed to degradate too slowly compared with the bone healing. Therefore, the porosity of the material should be increased in order to improve tissue healing.