950 resultados para TK Electrical engineering. Electronics Nuclear engineering
Resumo:
A presente dissertação é o resultado de um estudo realizado entre Março de 2015 e Março de 2016 centrado no tema Eficiência Energética nos Edifícios, no âmbito da Dissertação do 2º ano do Mestrado em Engenharia Eletrotécnica – Sistemas Elétricos de Energia no Instituto Superior de Engenharia do Porto (ISEP). Atualmente, os edifícios são responsáveis por cerca de 40% do consumo de energia na maioria dos países da europa. Energia consumida, principalmente, no aquecimento, arrefecimento e na alimentação de aparelhos elétricos. Os hospitais, como grandes edifícios, são grandes consumidores de energia e, na maioria dos países europeus, situam-se entre os edifícios públicos menos eficientes. Neste contexto, representam um tipo de edifícios cuja atividade apresenta um potencial de poupança energético importante. O tipo de atividade aí desenvolvida, aliada às especificidades do sector da saúde, faz deste tipo de edifícios um alvo de análise e otimização energética bastante apetecível. O presente trabalho passa pelo estudo do potencial para a eficiência energética de um hospital situado na zona do Porto. Foi, inicialmente, efetuado um levantamento das necessidades energéticas, de modo a identificar os sectores prioritários de atuação. Este estudo conta com a análise dos consumos obtidos através do processo de monitorização, substituição da iluminação existente por uma mais eficiente, a instalação de painéis solares para reduzir o consumo destinado às águas quentes sanitárias, a substituição de caldeira a diesel por caldeira a biomassa, substituição de um chiller por um mais eficiente, entre outros. Os consumos registados no hospital em estudo serão comparados com um plano nacional (Eficiência Energética e Hídrica no Sistema Nacional de Saúde), para, desta forma, se perceber quais os consumos do hospital em estudo, quando comparados com outros hospitais.
Resumo:
Due to increasing integration density and operating frequency of today's high performance processors, the temperature of a typical chip can easily exceed 100 degrees Celsius. However, the runtime thermal state of a chip is very hard to predict and manage due to the random nature in computing workloads, as well as the process, voltage and ambient temperature variability (together called PVT variability). The uneven nature (both in time and space) of the heat dissipation of the chip could lead to severe reliability issues and error-prone chip behavior (e.g. timing errors). Many dynamic power/thermal management techniques have been proposed to address this issue such as dynamic voltage and frequency scaling (DVFS), clock gating and etc. However, most of such techniques require accurate knowledge of the runtime thermal state of the chip to make efficient and effective control decisions. In this work we address the problem of tracking and managing the temperature of microprocessors which include the following sub-problems: (1) how to design an efficient sensor-based thermal tracking system on a given design that could provide accurate real-time temperature feedback; (2) what statistical techniques could be used to estimate the full-chip thermal profile based on very limited (and possibly noise-corrupted) sensor observations; (3) how do we adapt to changes in the underlying system's behavior, since such changes could impact the accuracy of our thermal estimation. The thermal tracking methodology proposed in this work is enabled by on-chip sensors which are already implemented in many modern processors. We first investigate the underlying relationship between heat distribution and power consumption, then we introduce an accurate thermal model for the chip system. Based on this model, we characterize the temperature correlation that exists among different chip modules and explore statistical approaches (such as those based on Kalman filter) that could utilize such correlation to estimate the accurate chip-level thermal profiles in real time. Such estimation is performed based on limited sensor information because sensors are usually resource constrained and noise-corrupted. We also took a further step to extend the standard Kalman filter approach to account for (1) nonlinear effects such as leakage-temperature interdependency and (2) varying statistical characteristics in the underlying system model. The proposed thermal tracking infrastructure and estimation algorithms could consistently generate accurate thermal estimates even when the system is switching among workloads that have very distinct characteristics. Through experiments, our approaches have demonstrated promising results with much higher accuracy compared to existing approaches. Such results can be used to ensure thermal reliability and improve the effectiveness of dynamic thermal management techniques.
Resumo:
Understanding and measuring the interaction of light with sub-wavelength structures and atomically thin materials is of critical importance for the development of next generation photonic devices. One approach to achieve the desired optical properties in a material is to manipulate its mesoscopic structure or its composition in order to affect the properties of the light-matter interaction. There has been tremendous recent interest in so called two-dimensional materials, consisting of only a single to a few layers of atoms arranged in a planar sheet. These materials have demonstrated great promise as a platform for studying unique phenomena arising from the low-dimensionality of the material and for developing new types of devices based on these effects. A thorough investigation of the optical and electronic properties of these new materials is essential to realizing their potential. In this work we present studies that explore the nonlinear optical properties and carrier dynamics in nanoporous silicon waveguides, two-dimensional graphite (graphene), and atomically thin black phosphorus. We first present an investigation of the nonlinear response of nanoporous silicon optical waveguides using a novel pump-probe method. A two-frequency heterodyne technique is developed in order to measure the pump-induced transient change in phase and intensity in a single measurement. The experimental data reveal a characteristic material response time and temporally resolved intensity and phase behavior matching a physical model dominated by free-carrier effects that are significantly stronger and faster than those observed in traditional silicon-based waveguides. These results shed light on the large optical nonlinearity observed in nanoporous silicon and demonstrate a new measurement technique for heterodyne pump-probe spectroscopy. Next we explore the optical properties of low-doped graphene in the terahertz spectral regime, where both intraband and interband effects play a significant role. Probing the graphene at intermediate photon energies enables the investigation of the nonlinear optical properties in the graphene as its electron system is heated by the intense pump pulse. By simultaneously measuring the reflected and transmitted terahertz light, a precise determination of the pump-induced change in absorption can be made. We observe that as the intensity of the terahertz radiation is increased, the optical properties of the graphene change from interband, semiconductor-like absorption, to a more metallic behavior with increased intraband processes. This transition reveals itself in our measurements as an increase in the terahertz transmission through the graphene at low fluence, followed by a decrease in transmission and the onset of a large, photo-induced reflection as fluence is increased. A hybrid optical-thermodynamic model successfully describes our observations and predicts this transition will persist across mid- and far-infrared frequencies. This study further demonstrates the important role that reflection plays since the absorption saturation intensity (an important figure of merit for graphene-based saturable absorbers) can be underestimated if only the transmitted light is considered. These findings are expected to contribute to the development of new optoelectronic devices designed to operate in the mid- and far-infrared frequency range. Lastly we discuss recent work with black phosphorus, a two-dimensional material that has recently attracted interest due to its high mobility and direct, configurable band gap (300 meV to 2eV), depending on the number of atomic layers comprising the sample. In this work we examine the pump-induced change in optical transmission of mechanically exfoliated black phosphorus flakes using a two-color optical pump-probe measurement. The time-resolved data reveal a fast pump-induced transparency accompanied by a slower absorption that we attribute to Pauli blocking and free-carrier absorption, respectively. Polarization studies show that these effects are also highly anisotropic - underscoring the importance of crystal orientation in the design of optical devices based on this material. We conclude our discussion of black phosphorus with a study that employs this material as the active element in a photoconductive detector capable of gigahertz class detection at room temperature for mid-infrared frequencies.
Resumo:
Graphs are powerful tools to describe social, technological and biological networks, with nodes representing agents (people, websites, gene, etc.) and edges (or links) representing relations (or interactions) between agents. Examples of real-world networks include social networks, the World Wide Web, collaboration networks, protein networks, etc. Researchers often model these networks as random graphs. In this dissertation, we study a recently introduced social network model, named the Multiplicative Attribute Graph model (MAG), which takes into account the randomness of nodal attributes in the process of link formation (i.e., the probability of a link existing between two nodes depends on their attributes). Kim and Lesckovec, who defined the model, have claimed that this model exhibit some of the properties a real world social network is expected to have. Focusing on a homogeneous version of this model, we investigate the existence of zero-one laws for graph properties, e.g., the absence of isolated nodes, graph connectivity and the emergence of triangles. We obtain conditions on the parameters of the model, so that these properties occur with high or vanishingly probability as the number of nodes becomes unboundedly large. In that regime, we also investigate the property of triadic closure and the nodal degree distribution.
Resumo:
Over the last decade, success of social networks has significantly reshaped how people consume information. Recommendation of contents based on user profiles is well-received. However, as users become dominantly mobile, little is done to consider the impacts of the wireless environment, especially the capacity constraints and changing channel. In this dissertation, we investigate a centralized wireless content delivery system, aiming to optimize overall user experience given the capacity constraints of the wireless networks, by deciding what contents to deliver, when and how. We propose a scheduling framework that incorporates content-based reward and deliverability. Our approach utilizes the broadcast nature of wireless communication and social nature of content, by multicasting and precaching. Results indicate this novel joint optimization approach outperforms existing layered systems that separate recommendation and delivery, especially when the wireless network is operating at maximum capacity. Utilizing limited number of transmission modes, we significantly reduce the complexity of the optimization. We also introduce the design of a hybrid system to handle transmissions for both system recommended contents ('push') and active user requests ('pull'). Further, we extend the joint optimization framework to the wireless infrastructure with multiple base stations. The problem becomes much harder in that there are many more system configurations, including but not limited to power allocation and how resources are shared among the base stations ('out-of-band' in which base stations transmit with dedicated spectrum resources, thus no interference; and 'in-band' in which they share the spectrum and need to mitigate interference). We propose a scalable two-phase scheduling framework: 1) each base station obtains delivery decisions and resource allocation individually; 2) the system consolidates the decisions and allocations, reducing redundant transmissions. Additionally, if the social network applications could provide the predictions of how the social contents disseminate, the wireless networks could schedule the transmissions accordingly and significantly improve the dissemination performance by reducing the delivery delay. We propose a novel method utilizing: 1) hybrid systems to handle active disseminating requests; and 2) predictions of dissemination dynamics from the social network applications. This method could mitigate the performance degradation for content dissemination due to wireless delivery delay. Results indicate that our proposed system design is both efficient and easy to implement.
Resumo:
Malware is a foundational component of cyber crime that enables an attacker to modify the normal operation of a computer or access sensitive, digital information. Despite the extensive research performed to identify such programs, existing schemes fail to detect evasive malware, an increasingly popular class of malware that can alter its behavior at run-time, making it difficult to detect using today’s state of the art malware analysis systems. In this thesis, we present DVasion, a comprehensive strategy that exposes such evasive behavior through a multi-execution technique. DVasion successfully detects behavior that would have been missed by traditional, single-execution approaches, while addressing the limitations of previously proposed multi-execution systems. We demonstrate the accuracy of our system through strong parallels with existing work on evasive malware, as well as uncover the hidden behavior within 167 of 1,000 samples.
Resumo:
Charge carrier lifetime measurements in bulk or unfinished photovoltaic (PV) materials allow for a more accurate estimate of power conversion efficiency in completed solar cells. In this work, carrier lifetimes in PV- grade silicon wafers are obtained by way of quasi-steady state photoconductance measurements. These measurements use a contactless RF system coupled with varying narrow spectrum input LEDs, ranging in wavelength from 460 nm to 1030 nm. Spectral dependent lifetime measurements allow for determination of bulk and surface properties of the material, including the intrinsic bulk lifetime and the surface recombination velocity. The effective lifetimes are fit to an analytical physics-based model to determine the desired parameters. Passivated and non-passivated samples are both studied and are shown to have good agreement with the theoretical model.
Resumo:
In this work a system of autonomous agents engaged in cyclic pursuit (under constant bearing (CB) strategy) is considered, for which one informed agent (the leader) also senses and responds to a stationary beacon. Building on the framework proposed in a previous work on beacon-referenced cyclic pursuit, necessary and suffi- cient conditions for the existence of circling equilibria in a system with one informed agent are derived, with discussion of stability and performance. In a physical testbed, the leader (robot) is equipped with a sound sensing apparatus composed of a real time embedded system, estimating direction of arrival of sound by an Interaural Level and Phase Difference Algorithm, using empirically determined phase and level signatures, and breaking front-back ambiguity with appropriate sensor placement. Furthermore a simple framework for implementing and evaluating the performance of control laws with the Robot Operating System (ROS) is proposed, demonstrated, and discussed.
Resumo:
A presente dissertação foi elaborada no âmbito do Mestrado em Engenharia Electrotécnica (MEE) no Instituto Superior de Engenharia do Porto (ISEP), em regime empresarial, na empresa PH Energia Lda. Tem-se verificado que, ao longo dos últimos anos, os mercados estão cada vez mais competitivos, tornando-se quase imperativo que as empresas apostem numa boa otimização dos processos produtivos. Produzir cada vez mais, mais rapidamente e com menos recursos disponíveis, ou seja, de forma eficiente, são os desafios de todas as empresas que pretendem permanecer no mercado. Neste contexto surge o tema de tese, “Gestão nos Serviços com Sistemas de Monitorização e Implementação do Smart Pricing”, cujo objetivo tem como base principal a otimização das plataformas da PH Energia numa cultura de melhoria contínua e orientação para o cliente e promover aplicação da tarifa indexada e Smart Pricing em empresas de maneira a que exista uma maior poupança. Ao longo desta dissertação, foram desenvolvidos cálculos associados à monitorização e gestão nos serviços, bem como demonstrada a viabilidade dos mesmos na aplicação de tarifasindexadas e Smart Pricing no setor empresarial e, para finalizar, a compensação que é possível obter ao deslocar o diagrama de cargas, mantendo sempre o mesmo consumo. Na elaboração deste trabalho fez-se o cruzamento de duas plataformas informáticas designadas GesEnergy e Kisense, com ajuda da empresa VPS que tem como parceria a empresa Energia Simples. Em relação ao plano indexado, foram realizados dois estudos de dois balcões do Banco Popular de Portugal de forma a explicitar quando e como deve ser aplicada a tarifa indexada, gestão da procura, bem como deve ser deslocação do consumo, de forma a abranger as horas mais vantajosas em que o preço de energia elétrica é mais baixo.
Resumo:
International audience
Resumo:
The performance, energy efficiency and cost improvements due to traditional technology scaling have begun to slow down and present diminishing returns. Underlying reasons for this trend include fundamental physical limits of transistor scaling, the growing significance of quantum effects as transistors shrink, and a growing mismatch between transistors and interconnects regarding size, speed and power. Continued Moore's Law scaling will not come from technology scaling alone, and must involve improvements to design tools and development of new disruptive technologies such as 3D integration. 3D integration presents potential improvements to interconnect power and delay by translating the routing problem into a third dimension, and facilitates transistor density scaling independent of technology node. Furthermore, 3D IC technology opens up a new architectural design space of heterogeneously-integrated high-bandwidth CPUs. Vertical integration promises to provide the CPU architectures of the future by integrating high performance processors with on-chip high-bandwidth memory systems and highly connected network-on-chip structures. Such techniques can overcome the well-known CPU performance bottlenecks referred to as memory and communication wall. However the promising improvements to performance and energy efficiency offered by 3D CPUs does not come without cost, both in the financial investments to develop the technology, and the increased complexity of design. Two main limitations to 3D IC technology have been heat removal and TSV reliability. Transistor stacking creates increases in power density, current density and thermal resistance in air cooled packages. Furthermore the technology introduces vertical through silicon vias (TSVs) that create new points of failure in the chip and require development of new BEOL technologies. Although these issues can be controlled to some extent using thermal-reliability aware physical and architectural 3D design techniques, high performance embedded cooling schemes, such as micro-fluidic (MF) cooling, are fundamentally necessary to unlock the true potential of 3D ICs. A new paradigm is being put forth which integrates the computational, electrical, physical, thermal and reliability views of a system. The unification of these diverse aspects of integrated circuits is called Co-Design. Independent design and optimization of each aspect leads to sub-optimal designs due to a lack of understanding of cross-domain interactions and their impacts on the feasibility region of the architectural design space. Co-Design enables optimization across layers with a multi-domain view and thus unlocks new high-performance and energy efficient configurations. Although the co-design paradigm is becoming increasingly necessary in all fields of IC design, it is even more critical in 3D ICs where, as we show, the inter-layer coupling and higher degree of connectivity between components exacerbates the interdependence between architectural parameters, physical design parameters and the multitude of metrics of interest to the designer (i.e. power, performance, temperature and reliability). In this dissertation we present a framework for multi-domain co-simulation and co-optimization of 3D CPU architectures with both air and MF cooling solutions. Finally we propose an approach for design space exploration and modeling within the new Co-Design paradigm, and discuss the possible avenues for improvement of this work in the future.
Resumo:
As the semiconductor industry struggles to maintain its momentum down the path following the Moore's Law, three dimensional integrated circuit (3D IC) technology has emerged as a promising solution to achieve higher integration density, better performance, and lower power consumption. However, despite its significant improvement in electrical performance, 3D IC presents several serious physical design challenges. In this dissertation, we investigate physical design methodologies for 3D ICs with primary focus on two areas: low power 3D clock tree design, and reliability degradation modeling and management. Clock trees are essential parts for digital system which dissipate a large amount of power due to high capacitive loads. The majority of existing 3D clock tree designs focus on minimizing the total wire length, which produces sub-optimal results for power optimization. In this dissertation, we formulate a 3D clock tree design flow which directly optimizes for clock power. Besides, we also investigate the design methodology for clock gating a 3D clock tree, which uses shutdown gates to selectively turn off unnecessary clock activities. Different from the common assumption in 2D ICs that shutdown gates are cheap thus can be applied at every clock node, shutdown gates in 3D ICs introduce additional control TSVs, which compete with clock TSVs for placement resources. We explore the design methodologies to produce the optimal allocation and placement for clock and control TSVs so that the clock power is minimized. We show that the proposed synthesis flow saves significant clock power while accounting for available TSV placement area. Vertical integration also brings new reliability challenges including TSV's electromigration (EM) and several other reliability loss mechanisms caused by TSV-induced stress. These reliability loss models involve complex inter-dependencies between electrical and thermal conditions, which have not been investigated in the past. In this dissertation we set up an electrical/thermal/reliability co-simulation framework to capture the transient of reliability loss in 3D ICs. We further derive and validate an analytical reliability objective function that can be integrated into the 3D placement design flow. The reliability aware placement scheme enables co-design and co-optimization of both the electrical and reliability property, thus improves both the circuit's performance and its lifetime. Our electrical/reliability co-design scheme avoids unnecessary design cycles or application of ad-hoc fixes that lead to sub-optimal performance. Vertical integration also enables stacking DRAM on top of CPU, providing high bandwidth and short latency. However, non-uniform voltage fluctuation and local thermal hotspot in CPU layers are coupled into DRAM layers, causing a non-uniform bit-cell leakage (thereby bit flip) distribution. We propose a performance-power-resilience simulation framework to capture DRAM soft error in 3D multi-core CPU systems. In addition, a dynamic resilience management (DRM) scheme is investigated, which adaptively tunes CPU's operating points to adjust DRAM's voltage noise and thermal condition during runtime. The DRM uses dynamic frequency scaling to achieve a resilience borrow-in strategy, which effectively enhances DRAM's resilience without sacrificing performance. The proposed physical design methodologies should act as important building blocks for 3D ICs and push 3D ICs toward mainstream acceptance in the near future.
Resumo:
Electric vehicle (EV) batteries tend to have accelerated degradation due to high peak power and harsh charging/discharging cycles during acceleration and deceleration periods, particularly in urban driving conditions. An oversized energy storage system (ESS) can meet the high power demands; however, it suffers from increased size, volume and cost. In order to reduce the overall ESS size and extend battery cycle life, a battery-ultracapacitor (UC) hybrid energy storage system (HESS) has been considered as an alternative solution. In this work, we investigate the optimized configuration, design, and energy management of a battery-UC HESS. One of the major challenges in a HESS is to design an energy management controller for real-time implementation that can yield good power split performance. We present the methodologies and solutions to this problem in a battery-UC HESS with a DC-DC converter interfacing with the UC and the battery. In particular, a multi-objective optimization problem is formulated to optimize the power split in order to prolong the battery lifetime and to reduce the HESS power losses. This optimization problem is numerically solved for standard drive cycle datasets using Dynamic Programming (DP). Trained using the DP optimal results, an effective real-time implementation of the optimal power split is realized based on Neural Network (NN). This proposed online energy management controller is applied to a midsize EV model with a 360V/34kWh battery pack and a 270V/203Wh UC pack. The proposed online energy management controller effectively splits the load demand with high power efficiency and also effectively reduces the battery peak current. More importantly, a 38V-385Wh battery and a 16V-2.06Wh UC HESS hardware prototype and a real-time experiment platform has been developed. The real-time experiment results have successfully validated the real-time implementation feasibility and effectiveness of the real-time controller design for the battery-UC HESS. A battery State-of-Health (SoH) estimation model is developed as a performance metric to evaluate the battery cycle life extension effect. It is estimated that the proposed online energy management controller can extend the battery cycle life by over 60%.
Resumo:
Rapid, sensitive and selective detection of chemical hazards and biological pathogens has shown growing importance in the fields of homeland security, public safety and personal health. In the past two decades, efforts have been focusing on performing point-of-care chemical and biological detections using miniaturized biosensors. These sensors convert target molecule binding events into measurable electrical signals for quantifying target molecule concentration. However, the low receptor density and the use of complex surface chemistry in receptors immobilization on transducers are common bottlenecks in the current biosensor development, adding to the cost, complexity and time. This dissertation presents the development of selective macromolecular Tobacco mosaic virus-like particle (TMV VLP) biosensing receptor, and the microsystem integration of VLPs in microfabricated electrochemical biosensors for rapid and performance-enhanced chemical and biological sensing. Two constructs of VLPs carrying different receptor peptides targeting at 2,4,6-trinitrotoluene (TNT) explosive or anti-FLAG antibody are successfully bioengineered. The VLP-based TNT electrochemical sensor utilizes unique diffusion modulation method enabled by biological binding between target TNT and receptor VLP. The method avoids the influence from any interfering species and environmental background signals, making it extremely suitable for directly quantifying the TNT level in a sample. It is also a rapid method that does not need any sensor surface functionalization process. For antibody sensing, the VLPs carrying both antibody binding peptides and cysteine residues are assembled onto the gold electrodes of an impedance microsensor. With two-phase immunoassays, the VLP-based impedance sensor is able to quantify antibody concentrations down to 9.1 ng/mL. A capillary microfluidics and impedance sensor integrated microsystem is developed to further accelerate the process of VLP assembly on sensors and improve the sensitivity. Open channel capillary micropumps and stop-valves facilitate localized and evaporation-assisted VLP assembly on sensor electrodes within 6 minutes. The VLP-functionalized impedance sensor is capable of label-free sensing of antibodies with the detection limit of 8.8 ng/mL within 5 minutes after sensor functionalization, demonstrating great potential of VLP-based sensors for rapid and on-demand chemical and biological sensing.
Resumo:
Social network sites (SNS), such as Facebook, Google+ and Twitter, have attracted hundreds of millions of users daily since their appearance. Within SNS, users connect to each other, express their identity, disseminate information and form cooperation by interacting with their connected peers. The increasing popularity and ubiquity of SNS usage and the invaluable user behaviors and connections give birth to many applications and business models. We look into several important problems within the social network ecosystem. The first one is the SNS advertisement allocation problem. The other two are related to trust mechanisms design in social network setting, including local trust inference and global trust evaluation. In SNS advertising, we study the problem of advertisement allocation from the ad platform's angle, and discuss its differences with the advertising model in the search engine setting. By leveraging the connection between social networks and hyperbolic geometry, we propose to solve the problem via approximation using hyperbolic embedding and convex optimization. A hyperbolic embedding method, \hcm, is designed for the SNS ad allocation problem, and several components are introduced to realize the optimization formulation. We show the advantages of our new approach in solving the problem compared to the baseline integer programming (IP) formulation. In studying the problem of trust mechanisms in social networks, we consider the existence of distrust (i.e. negative trust) relationships, and differentiate between the concept of local trust and global trust in social network setting. In the problem of local trust inference, we propose a 2-D trust model. Based on the model, we develop a semiring-based trust inference framework. In global trust evaluation, we consider a general setting with conflicting opinions, and propose a consensus-based approach to solve the complex problem in signed trust networks.