958 resultados para Synthetic coumarin
Resumo:
Proteins incorporated into phospholipid Langmuir-Blodgett (LB) films are a good model system for biomembranes and enzyme immobilization studies. The specific fluidity of biomembranes, an important requisite for enzymatic activity, is naturally controlled by varying phospholipid compositions. In a model system, instead, LB film fluidity may be varied by covering the top layer with different substances able to interact simultaneously with the phospholipid and the protein to be immobilized. In this study, we immobilized a carbohydrate rich Neurospora crassa alkaline phosphatase (NCAP) in monolayers of the sodium salt of dihexadecylphosphoric acid (DHP), a synthetic phospholipid that provides very condensed Langmuir films. The binding of NCAP to DHP Langmuir-Blodgett (LB) films was mediated by the anionic polysaccharide iota-carrageenan (iota-car). Combining results from surface isotherms and the quartz crystal microbalance technique, we concluded that the polysaccharide was essential to promote the interaction between DHP and NCAP and also to increase the fluidity of the film. An estimate of DHP:iota-car ratio within the film also revealed that the polysaccharide binds to DHP LB film in an extended conformation. Furthermore, the investigation of the polysaccharide conformation at molecular level, using sum-frequency vibrational spectroscopy (SFG), indicated a preferential conformation of the carrageenan molecules with the sulfate groups oriented toward the phospholipid monolayer, and both the hydroxyl and ether groups interacting preferentially with the protein. These results demonstrate how interfacial electric fields can reorient and induce conformational changes in macromolecules, which may significantly affect intermolecular interactions at interfaces. This detailed knowledge of the interaction mechanism between the enzyme and the LB film is relevant to design strategies for enzyme immobilization when orientation and fluidity properties of the film provided by the matrix are important to improve enzymatic activity.
Resumo:
The pendent-arm macrocyclic hexaamine trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine (L) may coordinate in tetra-, penta- or hexadentate modes, depending on the metal ion and the synthetic procedure. We report here the crystal structures of two pseudo-octahedral cobalt(III) complexes of L, namely sodium trans-cyano(trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine)cobalt(III) triperchlorate, Na[Co(CN)(C13H30N6)](ClO4)(3) or Na{trans-[CoL(CN)]}(ClO4)(3), (I), where L is coordinated as a pentadentate ligand, and trans-dicyano(trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) cobalt (III) trans-dicyano (trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diaminium)cobalt(III) tetraperchlorate tetrahydrate, [Co(CN)(2)(Cl4H32N6)][Co(CN)(2)(Cl4H30N6)](ClO4)(4)•-4H(2)O or trans-[CoL(CN)(2)]trans-[Co(H2L)(CN)(2)] (ClO4)(4)•-4H(2)O, (II), where the ligand binds in a tetradentate mode, with the remaining coordination sites being filled by C-bound cyano ligands. In (I), the secondary amine Co-N bond lengths lie within the range 1.944 (3)-1.969 (3) &ANGS;, while the trans influence of the cyano ligand lengthens the Co-N bond length of the coordinated primary amine [Co-N = 1.986 (3) &ANGS;]. The Co-CN bond length is 1.899 (3) &ANGS;. The complex cations in (11) are each located on centres of symmetry. The Co-N bond lengths in both cations are somewhat longer than in (I) and span a narrow range [1.972 (3)-1.982 (3) &ANGS;]. The two independent Co-CN bond lengths are similar [1.918 (4) and 1.926 (4) &ANGS;] but significantly longer than in the structure of (1), again a consequence of the trans influence of each cyano ligand.
Resumo:
Magnetic field effects on the conductivity of different types of organic devices: undoped and dye doped aluminium (III) 8-hydroxyquinoline (Alq(3))-based organic light emitting diodes (OLEDs), electron-only Alq(3)-based diodes, and a hole-only N,N`-diphenyl-N,N`-bis(1-naphthyl)1,1`-biphenyl-4,4`-diamine (alpha-NPD)-based diode were studied at room temperature. Only negative magnetoresistance (MR) was observed for the Alq(3)-based devices. The addition of a rubrene dye in Alq(3)-based OLEDs quenches the MR by a factor of 5. The alpha-NPD hole-only device showed only positive MR. Our results are discussed with respect to the actual models for MR in organic semiconductors. Our results are in good agreement with the bipolaron model. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Context: Kisspeptin, encoded by the KISS1 gene, is a key stimulatory factor of GnRH secretion and puberty onset. Inactivating mutations of its receptor (KISS1R) cause isolated hypogonadotropic hypogonadism (IHH). A unique KISS1R-activating mutation was described in central precocious puberty (CPP). Objective: Our objective was to investigate KISS1 mutations in patients with idiopathic CPP and normosmic IHH. Patients: Eighty-three children with CPP (77 girls) and 61 patients with IHH (40 men) were studied. The control group consisted of 200 individuals with normal pubertal development. Methods: The promoter region and the three exons of KISS1 were amplified and sequenced. Cells expressing KISS1R were stimulated with synthetic human wild-type or mutant kisspeptin-54 (kp54), and inositol phosphate accumulation was measured. In a second set of experiments, kp54 was preincubated in human serum before stimulation of the cells. Results: Two novel KISS1 missense mutations, p.P74S and p.H90D, were identified in three unrelated children with idiopathic CPP. Both mutations were absent in 400 control alleles. The p.P74S mutation was identified in the heterozygous state in a boy who developed CPP at 1 yr of age. The p.H90D mutation was identified in the homozygous state in two unrelated girls with CPP. In vitro studies revealed that the capacity of the P74S and H90D mutants to stimulate IP production was similar to the wild type. After preincubation of wild-type and mutant kp54 in human serum, the capacity to stimulate signal transduction was significantly greater for P74S compared with the wild type, suggesting that the p.P74S variant is more stable. Only polymorphisms were found in the IHH group. Conclusion: Two KISS1 mutations were identified in unrelated patients with idiopathic CPP. The p.P74S variant was associated with higher kisspeptin resistance to degradation in comparison with the wild type, suggesting a role for this mutation in the precocious puberty phenotype. (J Clin Endocrinol Metab 95: 2276-2280, 2010)
Resumo:
Pollution by polycyclic aromatic hydrocarbons(PAHs) is widespread due to unsuitable disposal of industrial waste. They are mostly defined as priority pollutants by environmental protection authorities worldwide. Phenanthrene, a typical PAH, was selected as the target in this paper. The PAH-degrading mixed culture, named ZM, was collected from a petroleum contaminated river bed. This culture was injected into phenanthrene solutions at different concentrations to quantify the biodegradation process. Results show near-complete removal of phenanthrene in three days of biodegradation if the initial phenanthrene concentration is low. When the initial concentration is high, the removal rate is increased but 20%-40% of the phenanthrene remains at the end of the experiment. The biomass shows a peak on the third day due to the combined effects of microbial growth and decay. Another peak is evident for cases with a high initial concentration, possibly due to production of an intermediate metabolite. The pH generally decreased during biodegradation because of the production of organic acid. Two phenomenological models were designed to simulate the phenanthrene biodegradation and biomass growth. A relatively simple model that does not consider the intermediate metabolite and its inhibition of phenanthrene biodegradation cannot fit the observed data. A modified Monod model that considered an intermediate metabolite (organic acid) and its inhibiting reversal effect reasonably depicts the experimental results.
Resumo:
BACKGROUND: Retention of airway secretions is a common and serious problem in ventilated patients. Treating or avoiding secretion retention with mucus thinning, patient-positioning, airway suctioning, or chest or airway vibration or percussion may provide short-term benefit. METHODS: In a series of laboratory experiments with a test-lung system we examined the role of ventilator settings and lung-impedance on secretion retention and expulsion. Known quantities of a synthetic dye-stained mucus simulant with clinically relevant properties were injected into a transparent tube the diameter of an adult trachea and exposed to various mechanical-ventilation conditions. Mucus-simulant movement was measured with a photodensitometric technique and examined with image-analysis software. We tested 2 mucus-simulant viscosities and various peak flows, inspiratory/ expiratory flow ratios, intrinsic positive end-expiratory pressures, ventilation waveforms, and impedance values. RESULTS: Ventilator settings that produced flow bias had a major effect on mucus movement. Expiratory How bias associated with intrinsic positive end-expiratory pressure generated by elevated minute ventilation moved mucus toward the airway opening, whereas intrinsic positive end-expiratory pressure generated by increased airway resistance moved the mucus toward the lungs. Inter-lung transfer of mucus simulant occurred rapidly across the ""carinal divider"" between interconnected test lungs set to radically different compliances; the mucus moved out of the low-compliance lung and into the high-compliance lung. CONCLUSIONS: The movement of mucus simulant was influenced by the ventilation pattern and lung impedance. Flow bias obtained with ventilator settings may clear or embed mucus during mechanical ventilation.
Resumo:
The field of protein crystallography inspires and enthrals, whether it be for the beauty and symmetry of a perfectly formed protein crystal, the unlocked secrets of a novel protein fold, or the precise atomic-level detail yielded from a protein-ligand complex. Since 1958, when the first protein structure was solved, there have been tremendous advances in all aspects of protein crystallography, from protein preparation and crystallisation through to diffraction data measurement and structure refinement. These advances have significantly reduced the time required to solve protein crystal structures, while at the same time substantially improving the quality and resolution of the resulting structures. Moreover, the technological developments have induced researchers to tackle ever more complex systems, including ribosomes and intact membrane-bound proteins, with a reasonable expectation of success. In this review, the steps involved in determining a protein crystal structure are described and the impact of recent methodological advances identified. Protein crystal structures have proved to be extraordinarily useful in medicinal chemistry research, particularly with respect to inhibitor design. The precise interaction between a drug and its receptor can be visualised at the molecular level using protein crystal structures, and this information then used to improve the complementarity and thus increase the potency and selectivity of an inhibitor. The use of protein crystal structures in receptor-based drug design is highlighted by (i) HIV protease, (ii) influenza virus neuraminidase and (iii) prostaglandin H-2-synthetase. These represent, respectively, examples of protein crystal structures that (i) influenced the design of drugs currently approved for use in the treatment of HIV infection, (ii) led to the design of compounds currently in clinical trials for the treatment of influenza infection and (iii) could enable the design of highly specific non-steroidal anti-inflammatory drugs that lack the common side-effects of this drug class.
Resumo:
Background: During the past 15 years, polymethylmethacrylate has been used as a synthetic permanent filler for soft-tissue augmentation. Methods: This. article reports 32 cases of complications seen at Hospital das Clinicas, Faculty of Medicine, University of Sao Paulo, for procedures performed elsewhere. Results: The average age of the patients was 43.6 years (range, 22 to 70 years). Twenty-five patients were women. Sixteen injection procedures were performed by certified plastic surgeons, nine by dermatologists, two by urologists, and one by a nonphysician. Complications were classified into five groups according to main presentation as follows: tissue necrosis (five cases), an acute complication that can be related to technical mistakes but that can also be dependent on patient factors or caused by local infection; granuloma (10 cases), which usually presents as a subacute complication 6 to 12 months after the procedure; chronic inflammatory reactions (10 cases), which usually occur years later and can be related to a triggering event, Such as another operation or infection in the area that was injected (these reactions are immunogenic in origin and may have cyclic periods of activation and remission); chronic inflammatory reaction in the lips (six cases), which may be present with severe symptoms, especially with lymphedema, because of mobility of the lip; and infections (one case), which are rare but possible complications after filling procedures. Conclusions: Polymethylmethacrylate filler complications, despite being rare, are often permanent and difficult or even impossible to treat. Safety guidelines should be observed when considering use of polymethylmethacrylate for augmentation.
Resumo:
Background: The use of synthetic mesh for abdominal wall closure after removal of the rectus abdominis is established but not standardised. This study compares two forms of mesh fixation: a simple suture, which fixes the mesh to the edges of the defect on the anterior rectus abdominis fascia; and total fixation, which incorporates the fasciae of the internal oblique, external oblique and transverse muscles in the suture, anchoring the mesh in the position of the removed muscle. Method: A total of 16 fresh cadavers were dissected. Two sutures were compared: simple and total. Three different sites were analysed: 5 cm above, 5 cm below and at the level of the umbilicus. The two sutures compared were tested in each region using a standardised technique. All sutures were performed with nylon 0, perpendicular to the linea alba. Each suture was secured to a dynamometer, which was pulled perpendicularly towards the midline until the rupture of the aponeurosis. `Rupture resistance` was measured in kilogram force. The mean among the groups was compared using the paired Student`s t-test to a significance level of 1% (p < 0.01). Results: The mean rupture resistance of the total suture was 160% higher than that of the simple suture. Conclusion: The total suture includes the external oblique, internal oblique and transverse fasciae, which are multi-directional, and creates a much higher resistance when compared with the simple suture. Total suture may reduce the incidence of bulging and hernias of the abdominal wall after harvesting the rectus abdominis muscle, but comparative clinical studies are necessary. (C) 2010 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Determination of the solution structures of conantokin-G and conantokin-T by CD and NMR spectroscopy
Resumo:
Conantokin-G and conantokin-T are two paralytic polypeptide toxins originally isolated from the venom of the fish-hunting cone snails of the genus Conus. Conantokin-G and conantokin-T are the only naturally occurring peptidic compounds which possess N-methyl-D-aspartate receptor antagonist activity, produced by a selective non-competitive antagonism of polyamine responses, They are also structurally unusual in that they contain a disproportionately large number of acid labile post-translational gamma-carboxyglutamic acid (Gla) residues, Although no precise structural information has previously been published for these peptides, early spectroscopic measurements have indicated that both conantokin-G and conantokin-T form alpha-helical structures, although there is some debate whether the presence of calcium ions is required for these peptides to adopt this fold, We now report a detailed structural study of synthetic conantokin-G and conantokin-T in a range of solution conditions using CD and H-1 NMR spec troscopy. The three-dimensional structures of conantokin-T and conantokin-G were calculated from H-1 NMR-derived distance and dihedral restraints. Both conantokins were found to contain a mixture of alpha- and 3(10) helix, that give rise to curved and straight helical conformers. Conantokin-G requires the presence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+) to form a stable iv-helix, while conantokin-T adopts a stable alpha-helical structure in aqueous conditions, in the presence or absence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+).
Resumo:
The search for an ideal filler for soft tissue augmentation still continues. Because aging changes are continuous, temporary fillers should be preferred against permanent ones. Since 1999, the poly-L-lactic acid filler (PLA) has been marketed in Europe as Newfill. As a synthetic biocompatible polymer, PLA originally was used in suture materials and screws. In 2004, the U.S. Food and Drug Administration approved PLA under the name of Sculptra for the treatment of human immunodeficiency virus-related facial lipoatrophy. This study aimed to evaluate a 3-year follow-up investigation into the effect of PLA implant injection for the treatment of sunken nasolabial folds. Between October 2003 and February 2004, 10 women with a median age of 54 years (range, 43-60 years) were injected with polylactic acid hydrogel (Newfill) in the nasolabial fold area for aesthetic reasons. All the patients underwent three injections: one injection per month for 3 months. Evaluation of the results based on clinical examination and photography was performed at each session, at 6 months, and then 36 months after the third session. Injectable PLA was able to correct nasolabial folds successfully with a more lasting result than absorbable fillers commonly used in clinical practice, such as hyaluronic acid and collagen. Careful and standardized photographic documentation is indispensable.
Resumo:
The St. Lawrence Island polynya (SLIP) is a commonly occurring winter phenomenon in the Bering Sea, in which dense saline water produced during new ice formation is thought to flow northward through the Bering Strait to help maintain the Arctic Ocean halocline. Winter darkness and inclement weather conditions have made continuous in situ and remote observation of this polynya difficult. However, imagery acquired from the European Space Agency ERS-1 Synthetic Aperture Radar (SAR) has allowed observation of the St. Lawrence Island polynya using both the imagery and derived ice displacement products. With the development of ARCSyM, a high resolution regional model of the Arctic atmosphere/sea ice system, simulation of the SLIP in a climate model is now possible. Intercomparisons between remotely sensed products and simulations can lead to additional insight into the SLIP formation process. Low resolution SAR, SSM/I and AVHRR infrared imagery for the St. Lawrence Island region are compared with the results of a model simulation for the period of 24-27 February 1992. The imagery illustrates a polynya event (polynya opening). With the northerly winds strong and consistent over several days, the coupled model captures the SLIP event with moderate accuracy. However, the introduction of a stability dependent atmosphere-ice drag coefficient, which allows feedbacks between atmospheric stability, open water, and air-ice drag, produces a more accurate simulation of the SLIP in comparison to satellite imagery. Model experiments show that the polynya event is forced primarily by changes in atmospheric circulation followed by persistent favorable conditions: ocean surface currents are found to have a small but positive impact on the simulation which is enhanced when wind forcing is weak or variable.
Resumo:
The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move generation procedure was compared against the random move generation procedure on seven multiminima test functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was then applied to fit the model dielectric function to data for platinum and aluminum.
Resumo:
Myelin proteolipid protein (PLP) contains 2 immunodominant encephalitogenic epitopes in SJL mice, namely PLP residues 139-151 and 178-191. DM20, a minor isoform of PLP, lacks residues 116-150 and consequently contains only the single major encephalitogenic epitope 178-191. However, it has been found previously that bovine DM20 is not encephalitogenic in SJL mice. Since residue 188 within peptide 178-191 is phenylalanine (F) in murine DM20 and alanine (A) in bovine DM20, we tested the effect of this difference on the immune responses and induction of EAE. SJL mice were immunized with either highly purified murine or bovine DM20. Residues 178-191 were found to be immunodominant for each, but only murine and not bovine DM20 was encephalitogenic. A synthetic peptide corresponding to the murine 178-191 sequence (F188) was also encephalitogenic, whereas the peptide corresponding to the bovine sequence (A188) was not. Both F188 and A188 bind with high affinity to I-A(s) and both are recognized by the SJL T cell repertoire. A188-specific T cell lines reacted to both A188 and F188, but F188-specific T cell lines were not stimulated by A188. F188-specific T cell lines produced mRNA for the Th1 cytokines IL2 and IFN gamma and, in passive transfer experiments, were encephalitogenic upon stimulation with F188, but not A188. In contrast, A188-specific T cell lines produced mRNA for IL4, IL5 and IL10, in addition to IL2 and IFN gamma, and were not encephalitogenic after stimulation with either F188 or A188. Cotransfer of A188-specific T cell lines with F188-specific T cell lines resulted in protection from EAE. Thus, A188 induces a functionally different phenotype of T cells from that induced by F188. Taken together these data suggest that the failure of bovine DM20 to induce EAE may be attributable to induction of protective rather than pathogenic T cells by the immunodominant epitope.
Resumo:
This study provides an investigation of the availability of octyl salicylate (OS), a common sunscreen agent, from liquid paraffin and the effect of OS on skin permeability. A model membrane system to isolate the vehicle effect from membrane permeability has been developed. Partitioning of OS between liquid paraffin and aqueous receptor phases was conducted. Partition coefficients increased with increase in OS concentration. A range of OS concentrations in liquid paraffin was diffused across human epidermis and synthetic membranes into 4% bovine serum albumin in phosphate-buffered saline and 50% ethanol. Absorption profiles of OS obtained from silicone and low-density polyethylene (LDPE) membranes were similar to each other but higher than for the high-density polyethylene [HDPE (3 times)] membrane and human epidermis (15 times). The steady state fluxes and apparent permeability coefficients (K-p') obtained from the diffusion studies showed the same trends with all membranes, except for the HDPE membrane which showed greater increase in flux and K-p' at concentrations above 30%. IR spectra showed that several bands of OS were shifted with concentrations, and the molecular models further suggested that the main contribution to the self-association is from non-1,4 van der Waals interactions.