978 resultados para Subunit


Relevância:

10.00% 10.00%

Publicador:

Resumo:

RATIONALE: Tuberculosis (TB) remains a leading cause of death, and the role of T-cell responses to control Mycobacterium tuberculosis infections is well recognized. Patients with latent TB infection develop strong IFN-gamma responses to the protective antigen heparin-binding hemagglutinin (HBHA), whereas patients with active TB do not. OBJECTIVES: We investigated the mechanism of this difference and evaluated the possible involvement of regulatory T (Treg) cells and/or cytokines in the low HBHA T-cell responses of patients with active TB. METHODS: The impact of anti-transforming growth factor (TGF)-beta and anti-IL-10 antibodies and of Treg cell depletion on the HBHA-induced IFN-gamma secretion was analyzed, and the Treg cell phenotype was characterized by flow cytometry. MEASUREMENTS AND MAIN RESULTS: Although the addition of anti-TGF-beta or anti-IL-10 antibodies had no effect on the HBHA-induced IFN-gamma secretion in patients with active TB, depletion of CD4(+)CD25(high)FOXP3(+) T lymphocytes resulted in the induction by HBHA of IFN-gamma concentrations that reached levels similar to those obtained for latent TB infection. No effect was noted on the early-secreted antigen target-6 or candidin T-cell responses. CONCLUSIONS: Specific CD4(+)CD25(high)FOXP3(+) T cells depress the T-cell-mediated immune responses to the protective mycobacterial antigen HBHA during active TB in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes phenotypic and genotypic variations in the planktonic copepod, Centropages typicus (Copepoda: Calanoida) that indicate differentiation between geographical samples. We found consistent differences in the morphology of the chela of the sexually modified fifth pereiopod (P5) of male C. typicus between samples from the Mediterranean, western North Atlantic and eastern North Atlantic. A 560 base pairs (bp) region of the C. typicus mitochondrial cytochrome c oxidase subunit I (COI) and a 462 bp fragment of the nuclear rDNA internal transcribed spacer (ITS) tandem array were analysed to determine whether these morphological variations reflect population genetic differentiation. Mitochondrial haplotype diversity was found to be high with 100 unique COI haplotypes among 116 individuals. Analysis of mtCOI variation suggested differentiation between the Mediterranean and Atlantic populations but no separation was detected within the Atlantic. Intragenomic variation in the ITS array suggested genetic differentiation between samples from the western North Atlantic and those from the eastern North Atlantic and Mediterranean. Breeding experiments would be required to elucidate the extent of genetic isolation between C. typicus from the different population centres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meroplankton, including bivalve larvae, are an important and yet understudied component of coastal marine food webs. Understanding the baseline of meroplankton ecology is imperative to establish and predict their sensitivity to local and global marine stressors. Over an annual cycle (October 2009–September 2010), bivalve larvae were collected from the Western Channel Observatory time series station L4 (50°15.00′N, 4°13.02′W). The morphologically similar larvae were identified by analysis of the 18S nuclear small subunit ribosomal RNA gene, and a series of incubation experiments were conducted to determine larval ingestion rates on natural plankton assemblages. Complementary gut content analysis was performed using a PCR-based method for detecting prey DNA both from field-collected larvae and those from the feeding experiments. Molecular identification of bivalve larvae showed the community composition to change over the course of the sampling period with domination by Phaxas in winter and higher diversity in autumn. The larvae selected for nanoeukaryotes (2–20 µm) including coccolithophores (<20 µm) which together comprised >75 % of the bivalve larvae diet. Additionally, a small percentage of carbon ingested originated from heterotrophic ciliates (<30 µm). The molecular analysis of bivalve larvae gut content provided increased resolution of identification of prey consumed and demonstrated that the composition of prey consumed established through bottle incubations conferred with that established from in situ larvae. Despite changes in bivalve larvae community structure, clearance rates of each prey type did not change significantly over the course of the experiment, suggesting different bivalve larvae species may consume similar prey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zooplankton play an important role in our oceans, in biogeochemical cycling and providing a food source for commercially important fish larvae. However, difficulties in correctly identifying zooplankton hinder our understanding of their roles in marine ecosystem functioning, and can prevent detection of long term changes in their community structure. The advent of massively parallel next generation sequencing technology allows DNA sequence data to be recovered directly from whole community samples. Here we assess the ability of such sequencing to quantify richness and diversity of a mixed zooplankton assemblage from a productive time series site in the Western English Channel. Methodology/Principle Findings Plankton net hauls (200 µm) were taken at the Western Channel Observatory station L4 in September 2010 and January 2011. These samples were analysed by microscopy and metagenetic analysis of the 18S nuclear small subunit ribosomal RNA gene using the 454 pyrosequencing platform. Following quality control a total of 419,041 sequences were obtained for all samples. The sequences clustered into 205 operational taxonomic units using a 97% similarity cut-off. Allocation of taxonomy by comparison with the National Centre for Biotechnology Information database identified 135 OTUs to species level, 11 to genus level and 1 to order, <2.5% of sequences were classified as unknowns. By comparison a skilled microscopic analyst was able to routinely enumerate only 58 taxonomic groups. Conclusions Metagenetics reveals a previously hidden taxonomic richness, especially for Copepoda and hard-to-identify meroplankton such as Bivalvia, Gastropoda and Polychaeta. It also reveals rare species and parasites. We conclude that Next Generation Sequencing of 18S amplicons is a powerful tool for elucidating the true diversity and species richness of zooplankton communities. While this approach allows for broad diversity assessments of plankton it may become increasingly attractive in future if sequence reference libraries of accurately identified individuals are better populated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The actin cytoskeleton is a dynamic and complex structure in fission yeast that plays a major function in many cell processes including cellular growth, septa formation, endocytosis and cellular division. Computational studies have shown that Arp2p, which forms part of the Arp2/3 complex, is a potential substrate of NatB acetyltransferase which has specificity for proteins possessing an N-terminal Met-Asp or Met-Glu sequence motif. In arm1- mutants the loss of function of Arm1p, an auxillary subunit required for NatB activity, results in a temperature sensitive phenotype characterized by multiple septa, failure of endocytosis, and the inability to form actin cables. A temperature sensitive mutant of Schizosaccharomyces pombe arp2 gene exhibits a similar phenotype as seen by the formation of improper septa, slow growth, and the delocalization of actin patches. Four expression vectors encoding the open reading frames of arp2 and cdc8 (tropomyosin) were constructed with a modification changing the second residue to a Histidine, believed to mimic the charge distribution of natural acetylation by NatB. Constructs tested in normal yeast strains remained viable and grew normally in the presence of Met-His Arp2p and tropomyosin. Analysis of their ability to suppress the mutant phenotypes of arp2-1 and arm1- mutants is an area of research to be explored in future studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human ether-a-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel (IKr) that is important for cardiac repolarization. Previously, we have discovered that hERG channels rapidly internalize in low extracellular K+ ([K+]o). In cell culture, this process is driven by the endocytic protein, caveolin-1 (Cav1), which is an integral player in the caveolae-dependant endocytosis pathway. However, in the heart, Caveolin-3 (Cav3) is, in fact, the predominant form in the myocyte, and thus may play a direct role in regulating hERG expression in the heart. Thus, I hypothesize that this reduction of hERG conductance in cardiac myocytes derives from the presence of Cav3, which is integral regulator of hERG homeostasis innately in the heart. To investigate the effect of Cav3 on hERG, I overexpressed Cav3 in human embryonic kidney 293 (HEK-293) cells stably expressing hERG channels. Cav3 overexpression significantly and specifically decreased both the hERG current amplitude and the mature channel expression in normal culture conditions. Co-immunoprecipitation analysis and confocal imaging demonstrated an association between hERG and Cav3 in HEK cells as well as rat and rabbit cardiomyocytes. Mechanistically, I discovered that Cav3 possesses a faster turnover rate compared to Cav1, and can enhance hERG degradation through up-regulating mature channel ubiquitination via the ubiquitin ligase, NEDD4-2. Knockdown of Cav3 in neonatal cardiac myocytes also enhanced hERG expression. My data indicate that Cav3 participates in hERG trafficking, and is an important regulator of hERG channel homeostasis in cardiac myocytes. This information provides a platform for future intervention of the hERG-induced type-2 long QT syndrome (LQTS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinesins are molecular motors that transport intracellular cargos along microtubules (MTs) and influence the organization and dynamics of the MT cytoskeleton. Their force-generating functions arise from conformational changes in their motor domain as ATP is bound and hydrolyzed, and products are released. In the budding yeast Saccharomyces cerevisiae, the Kar3 kinesin forms heterodimers with one of two non-catalytic kinesin-like proteins, Cik1 and Vik1, which lack the ability to bind ATP, and yet they retain the capacity to bind MTs. Cik1 and Vik1 also influence and respond to the MT-binding and nucleotide states of Kar3, and differentially regulate the functions of Kar3 during yeast mating and mitosis. The mechanism by which Kar3/Cik1 and Kar3/Vik1 dimers operate remains unknown, but has important implications for understanding mechanical coordination between subunits of motor complexes that traverse cytoskeletal tracks. In this study, we show that the opportunistic human fungal pathogen Candida albicans (Ca) harbors a single version of this unique form of heterodimeric kinesin and we present the first in vitro characterization of this motor. Like its budding yeast counterpart, the Vik1-like subunit binds directly to MTs and strengthens the MT-binding affinity of the heterodimer. However, in contrast to ScKar3/Cik1 and ScKar3/Vik1, CaKar3/Vik1 exhibits weaker overall MT-binding affinity and lower ATPase activity. Preliminary investigations using a multiple motor motility assay indicate CaKar3/Vik1 may not be motile. Using a maltose binding protein tagging system, we determined the X-ray crystal structure of the CaKar3 motor domain and observed notable differences in its nucleotide-binding pocket relative to ScKar3 that appear to represent a previously unobserved state of the active site. Together, these studies broaden our knowledge of novel kinesin motor assemblies and shed new light on structurally dynamic regions of Kar3/Vik1-like motor complexes that help mediate mechanical coordination of its subunits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphonopyruvate hydrolase, a novel bacterial carbon-phosphorus bond cleavage enzyme, was purified to homogeneity by a series of chromatographic steps from cell extracts of a newly isolated environmental strain of Variovorax sp. Pal2. The enzyme was inducible in the presence of phosphonoalanine or phosphonopyruvate; unusually, its expression was independent of the phosphate status of the cell. The native enzyme had a molecular mass of 63 kDa with a subunit mass of 31.2 kDa. Activity of purified phosphonopyruvate hydrolase was Co2+-dependent and showed a pH optimum of 6.7–7.0. The enzyme had a Km of 0.53 mM for its sole substrate, phosphonopyruvate, and was inhibited by the analogues phosphonoformic acid, 3-phosphonopropionic acid, and hydroxymethylphosphonic acid. The nucleotide sequence of the phosphonopyruvate hydrolase structural gene indicated that it is a member of the phosphoenolpyruvate phosphomutase/isocitrate lyase superfamily with 41% identity at the amino acid level to the carbon-to-phosphorus bond-forming enzyme phosphoenolpyruvate phosphomutase from Tetrahymena pyriformis. Thus its apparently ancient evolutionary origins differ from those of each of the two carbon-phosphorus hydrolases that have been reported previously; phosphonoacetaldehyde hydrolase is a member of the haloacetate dehalogenase family, whereas phosphonoacetate hydrolase belongs to the alkaline phosphatase superfamily of zinc-dependent hydrolases. Phosphonopyruvate hydrolase is likely to be of considerable significance in global phosphorus cycling, because phosphonopyruvate is known to be a key intermediate in the formation of all naturally occurring compounds that contain the carbon-phosphorus bond.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypoxia-inducible factor (HIF) transcription complex, which is activated by low oxygen tension, controls a diverse range of cellular processes including angiogenesis and erythropoiesis. Under normoxic conditions, the alpha subunit of HIF is rapidly degraded in a manner dependent on hydroxylation of two conserved proline residues at positions 402 and 564 in HIF-1alpha in the oxygen-dependent degradation (ODD) domain. This allows subsequent recognition by the von Hippel-Lindau (VHL) tumor suppressor protein, which targets HIF for degradation by the ubiquitin-proteasome pathway. Under hypoxic conditions, prolyl hydroxylation of HIF is inhibited, allowing it to escape VHL-mediated degradation. The transcriptional regulation of the erythropoietin gene by HIF raises the possibility that HIF may play a role in disorders of erythropoiesis, such as idiopathic erythrocytosis (IE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gentisate-1,2-dioxygenase genes (gdoA), with homology to a number of bacterial dioxygenases, and genes encoding a putative coenzyme A (CoA)-synthetase subunit (acdB) and a CoA-thioesterase (tieA) were identified in two haloarchaeal isolates. In Haloarcula sp. D1, gdoA was expressed during growth on 4-hydroxybenzoate but not benzoate, and acdB and tieA were not expressed during growth on any of the aromatic substrates tested. In contrast, gdoA was expressed in Haloferax sp. D1227 during growth on benzoate, 3-hydroxybenzoate, cinnamate and phenylpropionate, and both acdB and tieA were expressed during growth on benzoate, cinnamate and phenylpropionate, but not on 3-hydroxybenzoate. This pattern of induction is consistent with these genes encoding steps in a CoA-mediated benzoate pathway in this strain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The number of red blood cells is normally tightly regulated by a classic homeostatic mechanism based on oxygen sensing in the kidney. Decreased oxygen delivery resulting from anemia induces the production of erythropoietin, which increases red cell production and hence oxygen delivery. Investigations of erythropoietin regulation identified the transcription factor hypoxia-inducible factor (HIF). HIF is now recognized as being a key regulator of genes that function in a comprehensive range of processes besides erythropoiesis, including energy metabolism and angiogenesis. HIF itself is regulated through the -subunit, which is hydroxylated in the presence of oxygen by a family of three prolyl hydroxylase domain proteins (PHDs)/HIF prolyl hydroxylases/egg-laying-defective nine enzymes. Hydroxylation allows capture by the von Hippel–Lindau tumor suppressor gene product, ubiquitination, and destruction by the proteasome. Here we describe an inherited mutation in a mammalian PHD enzyme. We show that this mutation in PHD2 results in a marked decrease in enzyme activity and is associated with familial erythrocytosis, identifying a previously unrecognized cause of this condition. Our findings indicate that PHD2 is critical for normal regulation of HIF in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human Papilloma virus E6-associated protein (E6-AP), which is known as an E3 ubiquitin ligase, mediates ubiquitination and subsequent degradation of a series of cellular proteins. In this paper, we identify here trihydrophobin 1 (TH1), an integral subunit of the human negative transcription elongation factor (NELF) complex, as a novel E6-AP interaction protein and a target of E6-AP-mediated degradation. Overexpression of E6-AP results in degradation of TH1 in a dose-dependent manner, whereas knock-down of endogenous E6-AP elevates the TH1 protein level. TH1 protein turnover is substantially faster, compared to controls, in cells that overexpressed E6-AP. Wild-type E6-AP promotes the ubiquitination of TH1, while a catalytically inactive point mutant of E6-AP abolishes its ubiquitination. Furthermore, in vitro ubiquitination assay also demonstrates that TH1 can be ubiquitinated by E6-AP. The degradation is blocked by treatment with proteasome inhibitor MG132. Herein, we provide strong evidence that TH1 is a specific substrate that is targeted for degradation through E6-AP-catalyzed polyubiquitination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heterotrimeric kinesin-II motor in Caenorhabditis elegans consists of KLP-20, KLP-11, and KAP-1 subunits and broadly functions in cellular transport for the development of biological structures including cilia and axons. The results of this paper support the ubiquitous and necessary role kinesin-II motors have in development, particularly the KLP-20 microtubule-associating subunit. Mutations in klp-20 result in a variable abnormal (vab) phenotype characterized by observable epidermal defects, although the role of this gene in development and the mechanism by which the vab phenotype is produced is largely unknown. The vab phenotype is highly penetrant in the first larval stage (L1) of C. elegans, which supports that klp-20 functions in early development. Ciliated amphid sensory neurons can be stained with a fluorescent dye, DiI, to simultaneously test cilia structure and function, as well as the morphology of the amphid sensory organ. Reduced dye uptake in klp-20 mutant L1s suggests that the microtubule-based cilia are under-developed as a result of defective kinesin-II function. Consistent observations of the PLM mechanosensory neuron using the zdIs5 reporter suggest that klp-20 has an essential role in neuron development, as mutations to klp-20 result in under-developed PLM axons. Qualitative observations suggest there may be an interaction between the development of the overlying epidermis and the underlying nervous system, as a more severe vab phenotype is observed simultaneously with reduced dye uptake, and hence amphid sensory cilia under-development. Furthermore, a more severe vab phenotype manifested as large bumps on the posterior epidermis appears to be spatially correlated with PLM defects. The results presented and discussed in this paper suggest that KLP-20 has a necessary role in neurodevelopment and epidermal morphogenesis in C. elegans during embryogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erythrocytosis can arise from deregulation of the erythropoietin (Epo) axis resulting from defects in the oxygen-sensing pathway. Epo synthesis is controlled by the hypoxia inducible factor (HIF) complex, composed of an a and a ß subunit. There are 2 main a subunits, HIF-1a and HIF-2a. Recently, a HIF-2a Gly537Trp mutation was identified in a family with erythrocytosis. This raises the possibility of HIF2A mutations being associated with other cases of erythrocytosis. We now report a subsequent analysis of HIF2A in a cohort of 75 erythrocytosis patients and identify 4 additional patients with novel heterozygous Met535Val and Gly537Arg mutations. All patients presented at a young age with elevated serum Epo. Mutations at Gly-537 account for 4 of 5 HIF2A mutations associated with erythrocytosis. These findings support the importance of HIF-2a in human Epo regulation and warrant investigation of HIF2A in patients with unexplained erythrocytosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A melphalan-resistant variant (Roswell Park Memorial Institute (RPMI)-2650M1) and a paclitaxel-resistant variant (RPMI-1650Tx) of the drug-sensitive human nasal carcinoma cell line, RPMI-2650. were established. The multidrug resistance (MDR) phenotype in the RPMI-2650Tx appeared to be P-glycoprotein (PgP)-mediated. Overexpression of multidrug resistant protein (MRP) family members was observed in the RPMI-2650M1 cells, which were also much more invasive in vitro than the parental cell line or the paclitaxel-resistant variant. Increased expression of alpha (2), alpha (5), alpha (6), beta (1) and beta (4) integrin subunits, decreased expression of alpha (4) integrin subunit, stronger adhesion to collagen type IV, laminin, fibronectin and matrigel, increased expression of MMP-2 and MMP-9 and significant motility compared with the parental cells were observed, along with a high invasiveness in the RPMI-7650M1 cells. Decreased expression of the alpha (2) integrin subunit, decreased attachment to collagen type IV, absence of cytokeratin 18 expression, no detectable expression of gelatin-degrading proteases and poor motility may be associated with the non-invasiveness of the RPMI-2650Tx variant. These results suggest that melphalan exposure can result in not only a MDR phenotype. but could also make cancer cells more invasive, whereas paclitaxel exposure resulted in MDR without increasing the in vitro invasiveness in the RPMI-2650 cells. (C) 2001 Elsevier Science Ltd. All rights reserved.