940 resultados para Statistical concordance
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Um modelo estatístico para o DNA é estudado a fim de se obter informações sobre o comportamento de variáveis termodinâmicas. Atenção especial é dada à desnaturação térmica desta macromolécula.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using the functional integral formalism for the statistical generating functional in the statistical (finite temperature) quantum field theory, we prove the equivalence of many-photon Greens functions in the Duffin-Kennner-Petiau and Klein-Gordon-Fock statistical quantum field theories. As an illustration, we calculate the one-loop polarization operators in both theories and demonstrate their coincidence.
Resumo:
A statistical model of linear-confined quarks is applied to obtain the flavor asymmetry of the nucleon sea. The model parametrization is fixed by the experimental available data, where a temperature parameter is used to fit the Gottfried sum rule violation. Results are presented for the ratios of light quark and antiquark distributions, d/u and (d) over bar/(u) over bar.
Resumo:
The neutron-to-proton ratio of the structure functions, F(2)(n)/F(2)(p), as well as the corresponding difference F(2)(p)-F(2)(n) are obtained within a statistical quark model for the nucleon, where the quark energy levels are given by a central linear confining potential.
Resumo:
A statistical law for the multiplicities of the SU(3) irreps (lambda, mu) in the reduction of totally symmetric irreducible representations {m} of U(N), N = (eta + 1) (eta + 2)/2 with eta being the three-dimensional oscillator major shell quantum number, is derived in terms of the quadratic and cubic invariants of SU(3), by determining the first three terms of an asymptotic expansion for the multiplicities. To this end, the bivariate Edgeworth expansion known in statistics is used. Simple formulae, in terms of m and eta, for all the parameters in the expansion are derived. Numerical tests with large m and eta = 4, 5 and 6 show good agreement with the statistical formula for the SU(3) multiplicities.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A new universal empirical function that depends on a single critical exponent (acceleration exponent) is proposed to describe the scaling behavior in a dissipative kicked rotator. The scaling formalism is used to describe two regimes of dissipation: (i) strong dissipation and (ii) weak dissipation. For case (i) the model exhibits a route to chaos known as period doubling and the Feigenbaum constant along the bifurcations is obtained. When weak dissipation is considered the average action as well as its standard deviation are described using scaling arguments with critical exponents. The universal empirical function describes remarkably well a phase transition from limited to unlimited growth of the average action. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Dynamical systems of the billiard type are of fundamental importance for the description of numerous phenomena observed in many different fields of research, including statistical mechanics, Hamiltonian dynamics, nonlinear physics, and many others. This Focus Issue presents the recent progress in this area with contributions from the mathematical as well as physical stand point. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730155]
Resumo:
The combined CERN and Brookhaven heavy ion (H.I.) data supports a scenario of hadron gas which is in chemical and thermal equilibrium at a temperature T of about 140 MeV. Using the Brown-Stachel-Welke model (which gives 150 MeV) we show that in this scenario, the hot nucleons have mass 3 pi T and the pi and rho mesons have masses close to pi T and 2 pi T, respectively. A simple model with pions and quarks supports the co-existence of two phases in these heavy ion experiments, suggesting a second order phase transition. The masses of the pion, rho and the nucleon are intriguingly close to the lattice screening masses.
Resumo:
The code STATFLUX, implementing a new and simple statistical procedure for the calculation of transfer coefficients in radionuclide transport to animals and plants, is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. Flow parameters were estimated by employing two different least-squares procedures: Derivative and Gauss-Marquardt methods, with the available experimental data of radionuclide concentrations as the input functions of time. The solution of the inverse problem, which relates a given set of flow parameter with the time evolution of concentration functions, is achieved via a Monte Carlo Simulation procedure.Program summaryTitle of program: STATFLUXCatalogue identifier: ADYS_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADYS_v1_0Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions: noneComputer for which the program is designed and others on which it has been tested: Micro-computer with Intel Pentium III, 3.0 GHzInstallation: Laboratory of Linear Accelerator, Department of Experimental Physics, University of São Paulo, BrazilOperating system: Windows 2000 and Windows XPProgramming language used: Fortran-77 as implemented in Microsoft Fortran 4.0. NOTE: Microsoft Fortran includes non-standard features which are used in this program. Standard Fortran compilers such as, g77, f77, ifort and NAG95, are not able to compile the code and therefore it has not been possible for the CPC Program Library to test the program.Memory, required to execute with typical data: 8 Mbytes of RAM memory and 100 MB of Hard disk memoryNo. of bits in a word: 16No. of lines in distributed program, including test data, etc.: 6912No. of bytes in distributed Program, including test data, etc.: 229 541Distribution format: tar.gzNature of the physical problem: the investigation of transport mechanisms for radioactive substances, through environmental pathways, is very important for radiological protection of populations. One such pathway, associated with the food chain, is the grass-animal-man sequence. The distribution of trace elements in humans and laboratory animals has been intensively studied over the past 60 years [R.C. Pendlenton, C.W. Mays, R.D. Lloyd, A.L. Brooks, Differential accumulation of iodine-131 from local fallout in people and milk, Health Phys. 9 (1963) 1253-1262]. In addition, investigations on the incidence of cancer in humans, and a possible causal relationship to radioactive fallout, have been undertaken [E.S. Weiss, M.L. Rallison, W.T. London, W.T. Carlyle Thompson, Thyroid nodularity in southwestern Utah school children exposed to fallout radiation, Amer. J. Public Health 61 (1971) 241-249; M.L. Rallison, B.M. Dobyns, F.R. Keating, J.E. Rall, F.H. Tyler, Thyroid diseases in children, Amer. J. Med. 56 (1974) 457-463; J.L. Lyon, M.R. Klauber, J.W. Gardner, K.S. Udall, Childhood leukemia associated with fallout from nuclear testing, N. Engl. J. Med. 300 (1979) 397-402]. From the pathways of entry of radionuclides in the human (or animal) body, ingestion is the most important because it is closely related to life-long alimentary (or dietary) habits. Those radionuclides which are able to enter the living cells by either metabolic or other processes give rise to localized doses which can be very high. The evaluation of these internally localized doses is of paramount importance for the assessment of radiobiological risks and radiological protection. The time behavior of trace concentration in organs is the principal input for prediction of internal doses after acute or chronic exposure. The General Multiple-Compartment Model (GMCM) is the powerful and more accepted method for biokinetical studies, which allows the calculation of concentration of trace elements in organs as a function of time, when the flow parameters of the model are known. However, few biokinetics data exist in the literature, and the determination of flow and transfer parameters by statistical fitting for each system is an open problem.Restriction on the complexity of the problem: This version of the code works with the constant volume approximation, which is valid for many situations where the biological half-live of a trace is lower than the volume rise time. Another restriction is related to the central flux model. The model considered in the code assumes that exist one central compartment (e.g., blood), that connect the flow with all compartments, and the flow between other compartments is not included.Typical running time: Depends on the choice for calculations. Using the Derivative Method the time is very short (a few minutes) for any number of compartments considered. When the Gauss-Marquardt iterative method is used the calculation time can be approximately 5-6 hours when similar to 15 compartments are considered. (C) 2006 Elsevier B.V. All rights reserved.