931 resultados para Soluble lipase
Resumo:
Unusually high concentrations of ammonium have been observed in a Vertisol below 1 m depth in southeast Queensland. This study investigated the possibility that an absence of nitrification is allowing this ammonium to accumulate and persist over time, and examined the soil environmental characteristics that may be responsible for limiting nitrifying organisms. The possibility that anaerobiosis, soil acidity, soil salinity, low organic carbon concentrations, and/or an absence of active nitrifying microorganisms were responsible for limiting nitrification was examined in laboratory and field studies. The presence/absence of anaerobic conditions was determined qualitatively using a field test to give an indication of electron lability. In addition, an incubation study was conducted and soil environmental conditions were improved for nitrifying organisms by adjusting the pH from 4.4 to 7, adjusting the electrical conductivity from 1.6 to 0.5 dS/m, amending with a soluble carbon substrate at a rate of 500 mg/kg, and using microorganisms from the surface horizon to inoculate to the subsoil. Over a 180-day period no nitrification was detected in the control samples from the incubation study, indicating that an extremely low rate of nitrification is likely to be responsible for allowing ammonium to accumulate in this soil. Analysis of the effect of soil environmental conditions on nitrification revealed that anaerobic conditions did not exist at depth and that pH, EC, organic carbon, and inoculation treatments added in isolation had no effect on nitrification. However, when inoculum was added to the soil in combination with pH, a significant increase in nitrification was observed, and the greatest amount of nitrification was observed when inoculum, pH, and EC treatments were added in combination. It was concluded that the reason for the low rate of nitrification in this soil is primarily the absence of a significant population of active nitrifying microorganisms, which may have been unable to colonise the subsoil environment due to its acidic, and to a lesser extent, its saline environment.
Resumo:
PrrC from Rhodobacter sphaeroides provides the signal input to a two-component signal transduction system that senses changes in oxygen tension and regulates expression of genes involved in photosynthesis (Eraso, J.M. and Kaplan, S. (2000) Biochemistry, 39, 2052-2062; Oh, J.-I. and Kaplan, S. (2000) EMBO J. 19, 42374247). It is also a homologue of eukaryotic Sco proteins and each has a C-x-x-x-C-P sequence. In mitochondrial Sco proteins these cysteines appear to be essential for the biogenesis Of the Cu-A centre of respiratory cytochrome oxidase. Overexpression and purification of a water-soluble and monomeric form of PrrC has provided sufficient material for a chemical and spectroscopic study of the properties of the four cysteine residues of PrrC, and its ability to bind divalent cations, including copper. PrrC expressed in the cytoplasm of Escherichia coli binds Ni2+ tightly and the data are consistent with a mononuclear metal site. Following removal of Ni2+ and formation of renatured metal-free rPrrC (apo-PrrC), Cu2+ could be loaded into the reduced form of PrrC to generate a protein with a distinctive UV-visible spectrum, having absorbance with a lambda(max) of 360 nm. The copper:PrrC ratio is consistent with the presence of a mononuclear metal centre. The cysteines of metal-free PrrC oxidise in the presence of air to form two intramolecular disulfide bonds, with one pair being extremely reactive. The cysteine thiols with extreme O-2 sensitivity are involved in copper binding in reduced PrrC since the same copper-loaded protein could not be generated using oxidised PrrC. Thus, it appears that PrrC, and probably Sco proteins in general, could have both a thiol-disulfide oxidoreductase function and a copper-binding role. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
An active form of the Dengue virus protease NS3 (CF40.Gly.NS3pro) was expressed in Escherichia coli. This construct consists of a critical 40 amino acid cofactor domain from NS2B fused to the N-terminal 184 amino acid protease domain of NS3 via a flexible, covalent linker (Gly(4)SerGly(4)). The recombinantly produced protein is soluble and has a hexa-histidine tag engineered at the N-terminus for ease of purification using metal affinity chromatography. However, the presence of lower molecular weight impurities after affinity chromatography indicated the need for additional purification steps. The consistent appearance of these impurities suggested that they may be the products of proteolysis and/or auto-proteolysis. The latter possibility was subsequently excluded by the observation of the same impurities in a purified, catalytically inactive form of the recombinant protease (CF40.Gly.NS3pro.SA). Further analysis indicated that these impurities may represent premature translation termination products. Regardless of their origin, they were shown to form various sized aggregates with full-length CF40.Gly.NS3pro that can be separated by size exclusion chromatography, yielding fractions of active protease of sufficient purity for crystallisation trials. The ultimate goal of these studies is to obtain a crystal structure of a catalytically active form of the Dengue virus NS3 protease for structure-based drug design. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
A glasshouse study was undertaken to determine if the zeolite mineral clinoptilolite from an Australian deposit in combination with rock phosphate (RP) could significantly enhance the uptake of P by sunflowers. The zeolite/RP combination was intended to act as an exchange-fertiliser, with Ca2+ exchanging onto the zeolite in response to plant uptake of nutrient cations (NH4+ or K) enhancing the dissolution of the RP. A reactive RP (Sechura) and a relatively non-reactive RP (Duchess) were examined. Zeolite was used in Ca2+-, K+- and NH4+-saturated forms at ratios of 3.5:1 and 7:1 with RP; Ca2+-zeolite was considered the control, with exchange-induced dissolution possible from K+-and NH4+-zeolite, The zeolite/RP mixture was applied as a vertical band adjacent to the sunflower seedling. In addition, N was supplied as urea in an effort to determine if RP dissolution resulted from H+ release by nitrification. Phosphorus supply from the zeolite/RP system was compared with an available P source (KH2PO4). The experiment clearly demonstrated greatly enhanced plant uptake of P from RP when applied in combination with NH4-zeolite, though the P uptake was lower than that from the soluble P source. The zeolite/RP interaction was much more effective with the reactive R-P than the non-reactive material, Within the NH4+-zeolite/RP band, root proliferation was greatly increased, as would be expected in an exchange-fertiliser system. The K+-zeolite system did not produce a significantly greater yield than the Ca2+-zeolite control, probably because adequate K+ supply from the basal application reduced uptake within the zeolite/RP band, thus reducing the extent of exchange-induced dissolution. Nevertheless, increased root proliferation within the band was observed, implying that exchange-induced dissolution may also be possible from this system. The zeolite/RP system offers the considerable advantage of P release in response to plant demand and is unique in this regard. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A sensitive method using HPLC with fluorescence detection has been established for the measurement of porphyrins in biological materials. The assay recoveries were 88.0 +/- 1.8% for protoporphyrin IX in the blood, and ranged from 98.3 +/- 2.7% to 111.1 +/- 7.4% for various porphyrins in the urine. This method was employed to investigate the altered porphyrin profiles in rats after a single dose of various arsenicals including soluble sodium arsenate and sodium arsenite, and the relatively insoluble calcium arsenite, calcium arsenate and arsenic-contaminated soils at dose rates of 5 mg/kg or 0.5 mg/kg body weight. Porphyrin concentrations increased within 24-48hr after the arsenic treatment in blood and urine. Protoporphyrin IX is the predominant porphyrin in the blood. In rats administered 5 mg As(III)/kg body weight, protoporphyrin IX concentration elevated to 123% of them control values in rats, 24 hr after the treatment. Higher increases were recorded in the urinary protoporphyrin IX (253% at 24 hr; 397% on day 2), uroporphyrin (121% at 24 hr; 208% on day 2) and coproporphyrin 111 (391% at 24 hr; 304% on day 2), while there was no significant increase (109% on day 3) observed in the urinary coproporphyrin I excretion. In rats administered 5 mg As(V)/kg, urinary excretion of protoporphyrin IX, uroporphyrin, coproporphyrin Ill and coproporphyrin I elevated to the maximum levels by 48 hr with the corresponding percentage values compared to the control being 177%, 158%, 224% and 143%, respectively. In rats dosed with 5 mg As(III)/kg, the increases (expressed as % of the control values) of protoporphyrin IX in the blood were in the order: sodium arsenite (144%) > sodium arsenate (125%) greater than or equal to calcium arsenite (123%) > calcium arsenate. In contrast, there was no significant increase of protoporphyrin K when the six arsenic-contaminated cattlei dip soils and nine copper chrome arsenate (CCA-contaminated) soils were administered to the rats. Probable explanations are discussed.
Resumo:
The most characteristic feature of the microstructure of a magnesium alloy that contains more than a few tenths per cent soluble zirconium is the zirconium-rich cores that exist in most grains. The morphology, distribution and composition of cores observed in a Mg-0.56%Zr alloy and the small particles present in them were investigated. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The reason for the reported difference in spoilage behaviour of skim and whole pasteurised milks was investigated The rates of growth of psychrotrophic bacteria were not significantly different in the two milks and the bacterial types. till pseudomonad, present at spoilage were also similar. However. when representative spoilage organisms were cultured into freshly pasteurised skim and whole milks, skim milks exhibited predominantly bitter flavours while whole milk showed mostly sour flavours. The different spoilage, behaviours can be largely explained by greater proteolysis in skim milk than in whole milk. caused by, higher production of protease and greater susceptibility of the protein to protease attack. In addition, lipolysis in whole milk, caused by the substantial quantities of lipase produced by spoilage pseudomonads in this milk. also contributes to the different flavours produced during cold storage of these milk types.
Resumo:
In this paper, I describe my journey through a field of research in which I have been involved for some years - lipolysis in milk and dairy products. While I call it my journey, I have had many fellow travellers who have helped me along the way. These have been my research colleagues and collaborators, and, since I joined the University of Queensland, my students. The research has covered a variety of aspects but I have chosen to describe only a selection of these.
Resumo:
We report the isolation and initial characterisation of Indian Ocean ciguatoxin (I-CTX) present in toxic lipid soluble extracts isolated from ciguateric fishes collected off the Republic of Mauritius in the Indian Ocean. Following i.p. injection of this extract, mice displayed symptoms that were similar, though not identical, to those produced by Pacific and Caribbean ciguatoxins (P-CTXs and C-CTXs). Using a radiolabelled brevetoxin (PbTx) binding assay and mouse bioassay guided fractionation, I-CTX was purified by Florisil, Sephadex LH-20 and TSK HW-40S chromatography with good recovery. Isolation to purity was not possible by preparative reversed phase high-performance liquid chromatography (HPLC) due to significant losses of toxicity. However, analytical reversed phase HPLC coupled to an electrospray mass spectrometry detector identified a [M + H](+) ion at m/z 1141.58 which co-eluted with activity that displaced [3 H]-PbTx binding to rat brain. This mass corresponded to C-CTX-1, but the fragmentation pattern of I-CTX showed a different ratio of pseudo molecular and product ions. I-CTX was found to elute later than P-CTX-1 but was practically indistinguishable from C-CTX-1 on reversed phase HPLC, while the TSK HW-40S column chromatography differentiated I-CTX from the later eluting C-CTX-1. Taken together, these results indicate that I-CTX is a new ciguatoxin (CTX) responsible for ciguatera caused by reef fish in the Indian Ocean. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Hydrofluoric acid (HF) was used to pre-treat forest soils of south-east Queensland for assessing the effectiveness of iron (Fe) removal, carbon (C) composition using C-13 cross-polarisation (CP) with magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) before and after the HF pre-treatment, and the improvement of C-13 CPMAS NMR spectra. Soil samples were collected from 4 experimental sites of different soil types, harvest residue management or prescribed burning, and tree species. More than 86% of Fe was in all soil types removed by the HF treatment. The C-13 NMR spectral quality was improved with increased resolution, especially in the alkyl C and O-alkyl C regions, and reduced NMR run-time (1-5 h per sample compared with >20 h per sample without the pre-treatment). The C composition appeared to alter slightly after the pre-treatment, but this might be largely due to improved spectrometer conditions and increased resolution leading to more accurate NMR spectral integration. Organic C recovery after HF pre-treatment varied with soil types and forest management, and soluble soil organic matter (SOM) could be lost during the pre-treatment. The Fourier Transform-Infrared (FT-IR) spectra of HF extracts indicated the preferential removal of carboxylic C groups during the pre-treatment, but this could also be due to adsorbed water on the mineral matter. The NMR spectra revealed some changes in C composition and quality due to residue management and decomposition. Overall, the HF treatment was a useful pre-treatment for obtaining semi-quantitative C-13 CPMAS NMR spectra of subtropical Australian forest soils.
Resumo:
A field experiment was conducted to study the effect of micronutrients, zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), boron (13) and a commercial fritted micronutrient product called Zarzameen, on the yield and the yield components of wheat (Triticum aestivum L.), in the Peshawar valley, Pakistan. Different combinations of Zn, Cu. Fe. Mn, B, and Zarzameen were applied at the rate of 4.0, 2.0, 5.0, 2.0, 1.0 kg ha(-1) and 1.0 kg ha(-1), respectively, along with a basal dose of 100 kg ha(-1) nitrogen(N), 75 kg ha(-1) phosphorus (P) and 50 kg ha(-1) potassium (K). The fertilizer treatments (macro- and micronutrients) increased wheat dry matter, grain yield, and straw yield significantly over an unfertilized control. Soil tests for B and Zn were increased both at boot and harvesting stage, and Fe at boot stage, with the addition of micronutrients. Plants without B had showed classical B deficiency symptoms at grain formation stage, but not at vegetative stage. Boron concentration in the dry matter of wheat plants increased with the addition of the B fertilizer in the soil. Boron deficiency was not observed in plants containing >4 mg B kg(-1) at the boot stage, or in soils containing > 1.4 mg kg(-1) hot water soluble B.
Resumo:
Changes in carbohydrate metabolism of 'Kensington' mango fruit from 2 major production regions in Queensland were measured after conditioning fruit with hot air at 40degreesC for 0, 2, 4, 8 and 16 h or at 22degreesC for 16 h (control) followed by hot-water treatment at either 45degreesC fruit-core temperature for 30 min or 47degreesC fruit-core temperature held for 15 min. Advancing physiological maturity of 'Kensington' mango fruit was correlated with increased starch concentration within the mesocarp. An alpha-amylase inhibitor was present in unripe 'Kensington' mesocarp. alpha-Amylase activity was promoted by conditioning fruit at 40degreesC for 8 h, and this enhanced enzyme activity persisted until the fruit were ripe. Consequently, starch degradation was accelerated and the concentration of total soluble solids was higher in fruit conditioned at 40degreesC for 8 h than in fruit left at the lower temperature of 22degreesC for 16 h or not conditioned. Immediately on removal of fruit from hot-water treatment, activities of alpha-amylase and phosphorylase were inhibited. This inhibition was correlated with higher starch concentration and starch layer and starch spot injuries in these fruit. A positive correlation was also found between increased sucrose concentration and greater starch loss in 40degreesC conditioned 'Kensington' fruit. It is proposed that increased sugar concentration in the mesocarp increased the level of fruit heat tolerance.
Resumo:
The fate of N-15-nitrogen-enriched formulated feed fed to shrimp was traced through the food web in shallow, outdoor tank systems (1000 1) stocked with shrimp. Triplicate tanks containing shrimp water with and without sediment were used to identify the role of the natural biota in the water column and sediment in processing dietary nitrogen (N). A preliminary experiment demonstrated that N-15-nitrogen-enriched feed products could be detected in the food web. Based on this, a 15-day experiment was conducted. The ammonium (NH4+) pool in the water column became rapidly enriched (within one day) with N-15-nitrogen after shrimp were fed N-15-enriched feed. By day 15, 6% of the added N-15-nitrogen was in this fraction in the 'sediment' tanks compared with 0.4% in the 'no sediment' tanks. The particulate fraction in the water column, principally autotrophic nanoflagellates, accounted for 4-5% of the N-15-nitrogen fed to shrimp after one day. This increased to 16% in the 'no sediment' treatment, and decreased to 2% in the 'sediment' treatment by day 15. It appears that dietary N was more accessible to the phytoplankton community in the absence of sediment. The difference is possibly because a proportion of the dietary N was buried in the sediment in the 'sediment' treatment, making it unavailable to the phytoplankton. Alternatively, the dietary N was retained in the NH4+ pool in the water column since phytoplankton growth, and hence, N utilization was lower in the 'sediment' treatment. The lower growth of phytoplankton in the 'sediment' treatment appeared to be related to higher turbidity, and hence, lower light availability for growth. The percentage N-15-nitrogen detected in the sediment was only 6% despite the high capacity for sedimentation of the large biomass of plankton detritus and shrimp waste. This suggests rapid remineralization of organic waste by the microbial community in the sediment resulting in diffusion of inorganic N sources into the water column. It is likely that most of the dietary N will ultimately be removed from the tank system by water discharges. Our study showed that N-15-nitrogen derived from aquaculture feed can be processed by the microbial community in outdoor aquaculture systems and provides a method for determining the effect of dietary N on ecosystems. However, a significant amount of the dietary N was not retained by the natural biota and is likely to be present in the soluble organic fraction. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
1 Inhibition of rat platelet aggregation by the nitric oxide (NO) donor MAHMA NONOate (Z-1-{N-methyl-N-[6-(N-methylammoniohexyl)amino]}diazen-l-ium-1,2-diolate) was investigated. The aims were to compare its anti-aggregatory effect with vasorelaxation, to determine the effects of the soluble guanylate cyclase inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-ajquinoxalin-1-one), and to investigate the possible role of activation of sarco-encloplasmic reticulum calcium-ATPase (SERCA), independent of soluble guanylate cyclase, using thapsigargin. 2 MAHMA NONOate concentration-dependently inhibited sub-maximal aggregation responses to collagen (2 - 10 mug ml(-1)) and adenosine diphosphate (ADP; 2 mum) in platelet rich plasma. It was (i) more effective at inhibiting aggregation induced by collagen than by ADP, and (ii) less potent at inhibiting platelet aggregation than relaxing rat pulmonary artery. 3 ODQ (10 mum) caused only a small shift (approximately half a log unit) in the concentration-response curve to MAHMA NONOate irrespective of the aggregating agent. 4 The NO-independent activator of soluble guanylate cyclase, YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzy] indazole; 1 - 100 mum), did not inhibit aggregation. The cGMP analogue, 8-pCPT-cGMP (8-(4-chlorophenylthio)guanosine 3'5' cyclic monophosphate; 0.1 - 1 mm), caused minimal inhibition. 5 On collagen-aggregated platelets responses to MAHMA NONOate (ODQ 10 PM present) were abolished by thapsigargin (200 nm). On ADP-aggregated platelets thapsigargin caused partial inhibition. 6 Results with S-nitrosoglutathione (GSNO) resembled those with MAHMA NONOate. Glyceryl trinitrate and sodium nitroprusside were poor inhibitors of aggregation. 7 Thus inhibition of rat platelet aggregation by MAHMA NONOate (like GSNO) is largely ODQ-resistant and, by implication, independent of soluble guanylate cyclase. A likely mechanism of inhibition is activation of SERCA.
Resumo:
The effect of the solid and dissolved organic matter fractions, mineral composition and ionic strength of the soil solution on the sorption behaviour of pesticides were studied. A number of soils, chosen so as to have different clay mineral and organic carbon content, were used to study the sorption of the pesticides atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine), 2,4-D ((2,4-dichlorophenoxy) acetic acid), isoproturon (3-(4-isopropylphenyl)1,1-dimethylurea) and paraquat (1,1'-dimethyl-4,4'-bipyridinium) in the presence of low and high levels of dissolved organic carbon and different background electrolytes. The sorption behaviour of atrazine, isoproturon and paraquat was dominated by the solid state soil components and the presence of dissolved organic matter had little effect. The sorption of 2,4-D was slightly affected by the soluble organic matter in the soil. However, this effect may be due to competition for adsorption sites between the pesticide and the soluble organic matter rather than due to a positive interaction between the pesticide and the soluble fraction of soil organic matter. It is concluded that the major factor governing the sorption of these pesticides is the solid state organic fraction with the clay mineral content also making a significant contribution. The dissolved organic carbon fraction of the total organic carbon in the soil and the ionic strength of the soil solution appear to have little or no effect on the sorption/transport characteristics of these pesticides over the range of concentrations studied. (C) 2002 Elsevier Science B.V. All rights reserved.