925 resultados para Socio-Spatial Development
Resumo:
Population aging is a global demographic trend. This process is a reality that merits attention and importance in recent years, and cause considerable impact in terms of greater demands on the health sector, social security and special care and attention from families and society as a whole. Thus, in the context of addressing the consequences of demographic transition, population aging is characterized as a major challenge for Brazilian society. Therefore, this study was conducted in two main objectives. In the first article, variables of socioeconomic and demographic contexts were employed to identify multidimensional profiles of elderly residents in the Northeast capitals, from specific indicators from the 2010 Census information Therefore, we used the Grade of Membership Method (GoM), whose design profiles admits that an individual belongs to different degrees of relevance to multiple profiles in order to identify socioeconomic and demographic factors associated with living conditions of the elderly in the Northeastern capitals. The second article examined the possible relationship between mortality from chronic diseases and socio-economic indicators in the elderly population, of the 137 districts in Natal, broken down by ten-year age groups (60 to 69 years, 70-79 years and 80 and over. The microdata from the Mortality Information System (SIM), was used, provided by the Health Secretariat of Christmas, and population information came from the Population Census 2010. The method refers to the Global and Local Index neighborhood logic (LISA) Moran, whose spatial distribution from the choropleth maps allowed us to analyze the mortality of the elderly by neighborhoods, according to socioeconomic and demographic indicators, according to the presence of special significance. In the first article, the results show the identification of three extreme profiles. The Profile 1 which is characterized by median socioeconomic status and contributes 35.5% of elderly residents in the area considered. The profile 2 which brings together seniors with low socioeconomic status characteristics, with a percentage of 24.8% of cases. And the Profile 3 composing elderly with features that reveal better socioeconomic conditions, about 29.7% of the elderly. Overall, the results point to poor living conditions represented by the definition of these profiles, mainly expressed by the results observed in more than half of the northeastern elderly experience a situation of social vulnerability given the large percentage that makes up the Profile 1 and Profile 2, adding 60% of the elderly. In the second article, the results show a higher proportion of elderly concentrated in the neighborhoods of higher socioeconomic status, such as Petrópolis and LagoaSeca. Mortality rates, according to the causes of death and standardized by the empirical Bayesian method were distributed locally as follows: Neoplasms (Reis Santos, New Discovery, New Town, Grass Soft and Ponta Negra); Hypertensive diseases (Blue Lagoon, Potengi, Redinha, Reis Santos, Riverside, Lagoa Nova, Grass Soft, Neópolis and Ponta Negra); Acute Myocardial Infarction (Northeast, Guarapes and grass Soft); Cerebrovascular diseases (Petrópolis and Mother Luiza); Pneumonia (Ribeira, Praia do Meio, New Discovery, Grass Soft and Ponta Negra); Chronic Diseases of the Lower Way Airlines (Igapó, Northeast and Thursdays). The present findings at work may contribute to other studies on the subject and development of specific policies for the elderly.
Resumo:
Human use of the oceans is increasingly in conflict with conservation of endangered species. Methods for managing the spatial and temporal placement of industries such as military, fishing, transportation and offshore energy, have historically been post hoc; i.e. the time and place of human activity is often already determined before assessment of environmental impacts. In this dissertation, I build robust species distribution models in two case study areas, US Atlantic (Best et al. 2012) and British Columbia (Best et al. 2015), predicting presence and abundance respectively, from scientific surveys. These models are then applied to novel decision frameworks for preemptively suggesting optimal placement of human activities in space and time to minimize ecological impacts: siting for offshore wind energy development, and routing ships to minimize risk of striking whales. Both decision frameworks relate the tradeoff between conservation risk and industry profit with synchronized variable and map views as online spatial decision support systems.
For siting offshore wind energy development (OWED) in the U.S. Atlantic (chapter 4), bird density maps are combined across species with weights of OWED sensitivity to collision and displacement and 10 km2 sites are compared against OWED profitability based on average annual wind speed at 90m hub heights and distance to transmission grid. A spatial decision support system enables toggling between the map and tradeoff plot views by site. A selected site can be inspected for sensitivity to a cetaceans throughout the year, so as to capture months of the year which minimize episodic impacts of pre-operational activities such as seismic airgun surveying and pile driving.
Routing ships to avoid whale strikes (chapter 5) can be similarly viewed as a tradeoff, but is a different problem spatially. A cumulative cost surface is generated from density surface maps and conservation status of cetaceans, before applying as a resistance surface to calculate least-cost routes between start and end locations, i.e. ports and entrance locations to study areas. Varying a multiplier to the cost surface enables calculation of multiple routes with different costs to conservation of cetaceans versus cost to transportation industry, measured as distance. Similar to the siting chapter, a spatial decisions support system enables toggling between the map and tradeoff plot view of proposed routes. The user can also input arbitrary start and end locations to calculate the tradeoff on the fly.
Essential to the input of these decision frameworks are distributions of the species. The two preceding chapters comprise species distribution models from two case study areas, U.S. Atlantic (chapter 2) and British Columbia (chapter 3), predicting presence and density, respectively. Although density is preferred to estimate potential biological removal, per Marine Mammal Protection Act requirements in the U.S., all the necessary parameters, especially distance and angle of observation, are less readily available across publicly mined datasets.
In the case of predicting cetacean presence in the U.S. Atlantic (chapter 2), I extracted datasets from the online OBIS-SEAMAP geo-database, and integrated scientific surveys conducted by ship (n=36) and aircraft (n=16), weighting a Generalized Additive Model by minutes surveyed within space-time grid cells to harmonize effort between the two survey platforms. For each of 16 cetacean species guilds, I predicted the probability of occurrence from static environmental variables (water depth, distance to shore, distance to continental shelf break) and time-varying conditions (monthly sea-surface temperature). To generate maps of presence vs. absence, Receiver Operator Characteristic (ROC) curves were used to define the optimal threshold that minimizes false positive and false negative error rates. I integrated model outputs, including tables (species in guilds, input surveys) and plots (fit of environmental variables, ROC curve), into an online spatial decision support system, allowing for easy navigation of models by taxon, region, season, and data provider.
For predicting cetacean density within the inner waters of British Columbia (chapter 3), I calculated density from systematic, line-transect marine mammal surveys over multiple years and seasons (summer 2004, 2005, 2008, and spring/autumn 2007) conducted by Raincoast Conservation Foundation. Abundance estimates were calculated using two different methods: Conventional Distance Sampling (CDS) and Density Surface Modelling (DSM). CDS generates a single density estimate for each stratum, whereas DSM explicitly models spatial variation and offers potential for greater precision by incorporating environmental predictors. Although DSM yields a more relevant product for the purposes of marine spatial planning, CDS has proven to be useful in cases where there are fewer observations available for seasonal and inter-annual comparison, particularly for the scarcely observed elephant seal. Abundance estimates are provided on a stratum-specific basis. Steller sea lions and harbour seals are further differentiated by ‘hauled out’ and ‘in water’. This analysis updates previous estimates (Williams & Thomas 2007) by including additional years of effort, providing greater spatial precision with the DSM method over CDS, novel reporting for spring and autumn seasons (rather than summer alone), and providing new abundance estimates for Steller sea lion and northern elephant seal. In addition to providing a baseline of marine mammal abundance and distribution, against which future changes can be compared, this information offers the opportunity to assess the risks posed to marine mammals by existing and emerging threats, such as fisheries bycatch, ship strikes, and increased oil spill and ocean noise issues associated with increases of container ship and oil tanker traffic in British Columbia’s continental shelf waters.
Starting with marine animal observations at specific coordinates and times, I combine these data with environmental data, often satellite derived, to produce seascape predictions generalizable in space and time. These habitat-based models enable prediction of encounter rates and, in the case of density surface models, abundance that can then be applied to management scenarios. Specific human activities, OWED and shipping, are then compared within a tradeoff decision support framework, enabling interchangeable map and tradeoff plot views. These products make complex processes transparent for gaming conservation, industry and stakeholders towards optimal marine spatial management, fundamental to the tenets of marine spatial planning, ecosystem-based management and dynamic ocean management.
Resumo:
The evolution of reproductive strategies involves a complex calculus of costs and benefits to both parents and offspring. Many marine animals produce embryos packaged in tough egg capsules or gelatinous egg masses attached to benthic surfaces. While these egg structures can protect against environmental stresses, the packaging is energetically costly for parents to produce. In this series of studies, I examined a variety of ecological factors affecting the evolution of benthic development as a life history strategy. I used marine gastropods as my model system because they are incredibly diverse and abundant worldwide, and they exhibit a variety of reproductive and developmental strategies.
The first study examines predation on benthic egg masses. I investigated: 1) behavioral mechanisms of predation when embryos are targeted (rather than the whole egg mass); 2) the specific role of gelatinous matrix in predation. I hypothesized that gelatinous matrix does not facilitate predation. One study system was the sea slug Olea hansineensis, an obligate egg mass predator, feeding on the sea slug Haminoea vesicula. Olea fed intensely and efficiently on individual Haminoea embryos inside egg masses but showed no response to live embryos removed from gel, suggesting that gelatinous matrix enables predation. This may be due to mechanical support of the feeding predator by the matrix. However, Haminoea egg masses outnumber Olea by two orders of magnitude in the field, and each egg mass can contain many tens of thousands of embryos, so predation pressure on individuals is likely not strong. The second system involved the snail Nassarius vibex, a non-obligate egg mass predator, feeding on the polychaete worm Clymenella mucosa. Gel neither inhibits nor promotes embryo predation for Nassarius, but because it cannot target individual embryos inside an egg mass, its feeding is slow and inefficient, and feeding rates in the field are quite low. However, snails that compete with Nassarius for scavenged food have not been seen to eat egg masses in the field, leaving Nassarius free to exploit the resource. Overall, egg mass predation in these two systems likely benefits the predators much more than it negatively affects the prey. Thus, selection for environmentally protective aspects of egg mass production may be much stronger than selection for defense against predation.
In the second study, I examined desiccation resistance in intertidal egg masses made by Haminoea vesicula, which preferentially attaches its flat, ribbon-shaped egg masses to submerged substrata. Egg masses occasionally detach and become stranded on exposed sand at low tide. Unlike adults, the encased embryos cannot avoid desiccation by selectively moving about the habitat, and the egg mass shape has high surface-area-to-volume ratio that should make it prone to drying out. Thus, I hypothesized that the embryos would not survive stranding. I tested this by deploying individual egg masses of two age classes on exposed sand bars for the duration of low tide. After rehydration, embryos midway through development showed higher rates of survival than newly-laid embryos, though for both stages survival rates over 25% were frequently observed. Laboratory desiccation trials showed that >75% survival is possible in an egg mass that has lost 65% of its water weight, and some survival (<25%) was observed even after 83% water weight lost. Although many surviving embryos in both experiments showed damage, these data demonstrate that egg mass stranding is not necessarily fatal to embryos. They may be able to survive a far greater range of conditions than they normally encounter, compensating for their lack of ability to move. Also, desiccation tolerance of embryos may reduce pressure on parents to find optimal laying substrata.
The third study takes a big-picture approach to investigating the evolution of different developmental strategies in cone snails, the largest genus of marine invertebrates. Cone snail species hatch out of their capsules as either swimming larvae or non-dispersing forms, and their developmental mode has direct consequences for biogeographic patterns. Variability in life history strategies among taxa may be influenced by biological, environmental, or phylogenetic factors, or a combination of these. While most prior research has examined these factors singularly, my aim was to investigate the effects of a host of intrinsic, extrinsic, and historical factors on two fundamental aspects of life history: egg size and egg number. I used phylogenetic generalized least-squares regression models to examine relationships between these two egg traits and a variety of hypothesized intrinsic and extrinsic variables. Adult shell morphology and spatial variability in productivity and salinity across a species geographic range had the strongest effects on egg diameter and number of eggs per capsule. Phylogeny had no significant influence. Developmental mode in Conus appears to be influenced mostly by species-level adaptations and niche specificity rather than phylogenetic conservatism. Patterns of egg size and egg number appear to reflect energetic tradeoffs with body size and specific morphologies as well as adaptations to variable environments. Overall, this series of studies highlights the importance of organism-scale biotic and abiotic interactions in evolutionary patterns.
Resumo:
A tenet of modern radiotherapy (RT) is to identify the treatment target accurately, following which the high-dose treatment volume may be expanded into the surrounding tissues in order to create the clinical and planning target volumes. Respiratory motion can induce errors in target volume delineation and dose delivery in radiation therapy for thoracic and abdominal cancers. Historically, radiotherapy treatment planning in the thoracic and abdominal regions has used 2D or 3D images acquired under uncoached free-breathing conditions, irrespective of whether the target tumor is moving or not. Once the gross target volume has been delineated, standard margins are commonly added in order to account for motion. However, the generic margins do not usually take the target motion trajectory into consideration. That may lead to under- or over-estimate motion with subsequent risk of missing the target during treatment or irradiating excessive normal tissue. That introduces systematic errors into treatment planning and delivery. In clinical practice, four-dimensional (4D) imaging has been popular in For RT motion management. It provides temporal information about tumor and organ at risk motion, and it permits patient-specific treatment planning. The most common contemporary imaging technique for identifying tumor motion is 4D computed tomography (4D-CT). However, CT has poor soft tissue contrast and it induce ionizing radiation hazard. In the last decade, 4D magnetic resonance imaging (4D-MRI) has become an emerging tool to image respiratory motion, especially in the abdomen, because of the superior soft-tissue contrast. Recently, several 4D-MRI techniques have been proposed, including prospective and retrospective approaches. Nevertheless, 4D-MRI techniques are faced with several challenges: 1) suboptimal and inconsistent tumor contrast with large inter-patient variation; 2) relatively low temporal-spatial resolution; 3) it lacks a reliable respiratory surrogate. In this research work, novel 4D-MRI techniques applying MRI weightings that was not used in existing 4D-MRI techniques, including T2/T1-weighted, T2-weighted and Diffusion-weighted MRI were investigated. A result-driven phase retrospective sorting method was proposed, and it was applied to image space as well as k-space of MR imaging. Novel image-based respiratory surrogates were developed, improved and evaluated.
Resumo:
Unlike its childhood counterpart, adult and continuing education is a voluntary activity, where adult learners partake in educational programs for the sake of realizing some explicit or implicit goal. The purpose of this study was to explore the association between socio-cultural influences and deterrents to participation of middle class urban Indian women in adult and continuing educational programs. Darkenwald and Merriam’s (1982) theory of non-participation was selected as the theoretical lens used to guide this study. This study involved collecting qualitative data to analyze participant views and was collected through 16 semi-structured interviews to explore participants’ individual perceptions concerning socio-cultural deterrents influencing participation of middle class urban Indian women in adult and continuing educational programs. Qualitative data were analyzed to discover emerging themes and sub-themes. In the second phase of the study, a modified Deterrent to Participation Scale – General (DPS-G) was used to measure data collected from the surveys completed by participants, that included specific demographic questions. Descriptive statistics were used to examine the relationships between the demographic questions and the deterrent identified on the DPS-G. The interview and survey data were used convergently to understand the relationship between socio-cultural influences and deterrents impacting participant participation in adult and continuing educational programs. The findings of the study indicated that the biggest socio-cultural influence deterring participation among middle class urban Indian women in adult and continuing educational programs is marriage. It is an Indian social norm that comes with a set of pre-defined roles and expectations, and married women find themselves consumed by fulfilling the marital and familial expectations and responsibilities and participation in adult and continuing educational program is furthest from their mind. Middle class urban Indian women do realize the importance of educational pursuits, but do not feel that they can, after marriage. They are open, however, to pursuing adult educational programs in the form of short-term skill development programs leading to income generation, although they would lead primarily to home-based work enterprises.
Resumo:
Marine Areas for Responsible Artisanal Fishing (AMPR) have emerged as a new model for co-managing small-scale fisheries in Costa Rica, one that involves collaboration between fishers, government agencies and NGOs. This thesis aims to examine the context for collective action and co-management by small-scale fishers; evaluate the design, implementation, and enforcement of AMPRs; and conduct a linguistic analysis of fisheries legislation. The present work relies on the analysis of several types of qualitative data, including interviews with 23 key informants, rapid rural assessments, and legal documents. Findings demonstrate the strong influence of economic factors for sustaining collective action, as well as the importance of certain types of external organizations for community development and co-management. Additionally, significant enforcement gaps and institutional deficiencies were identified in the work of regulating agencies. Legal analysis suggests that mechanisms for government accountability are unavailable and that legal discourse reflects some of the most salient problems in management.
Resumo:
Examining the spatial structure of clusters is essential for deriving regional development policy implications. In this study, we identify the manufacturing clusters in Cambodia, the Lao People's Democratic Republic, and Thailand, using two indices—global extent (GE) and local density (LD)—as proposed by Mori and Smith (2013). We also analyze four different combinations of these indices to highlight the spatial structures of industrial agglomerations. Since industrial clusters often spread over administrative boundaries, the GE and LD indices—along with cluster mapping—display how the detected clusters fit into specific spatial structures.
Resumo:
Climate change is expected to have marked impacts on forest ecosystems. In Ontario forests, this includes changes in tree growth, stand composition and disturbance regimes, with expected impacts on many forest-dependent communities, the bioeconomy, and other environmental considerations. In response to climate change, renewable energy systems, such as forest bioenergy, are emerging as critical tools for carbon emissions reductions and climate change mitigation. However, these systems may also need to adapt to changing forest conditions. Therefore, the aim of this research was to estimate changes in forest growth and forest cover in response to anticipated climatic changes in the year 2100 in Ontario forests, to ultimately explore the sustainability of bioenergy in the future. Using the Haliburton Forest and Wildlife Reserve in Ontario as a case study, this research used a spatial climate analog approach to match modeled Haliburton temperature and precipitation (via Fourth Canadian Regional Climate Model) to regions currently exhibiting similar climate (climate analogs). From there, current forest cover and growth rates of core species in Haliburton were compared to forests plots in analog regions from the US Forest Service Forest Inventory and Analysis (FIA). This comparison used two different emission scenarios, corresponding to a high and a mid-range emission future. This research then explored how these changes in forests may influence bioenergy feasibility in the future. It examined possible volume availability and composition of bioenergy feedstock under future conditions. This research points to a potential decline of softwoods in the Haliburton region with a simultaneous expansion of pre-established hardwoods such as northern red oak and red maple, as well as a potential loss in sugar maple cover. From a bioenergy perspective, hardwood residues may be the most feasible feedstock in the future with minimal change in biomass availability for energy production; under these possible conditions, small scale combined heat and power (CHP) and residential pellet use may be the most viable and ecologically sustainable options. Ultimately, understanding the way in which forests may change is important in informing meaningful policy and management, allowing for improved forest bioenergy systems, now and in the future.
Resumo:
China is today facing rapid economic development and the long-term implications of China’s rise for European economy, society and culture, are constantly debated but still almost unknown. Moreover, only recently a new volume edited by Kunzmann has clearly pointed out a particular field of research like the EU spatial impact of China’s convergence in the global market. The aim of the present paper is to deal with the spatial issues related to the growing Chinese communities, especially in Italy, that are part of a more general and considerable transformation process of the traditional Chinese enclaves in EU cities: from recognizable “Chinatowns” to new hybrid urban formations where housing, retail, wholesale and even commodity production often tend to match. Key-Concepts like rise, fragmentation, infringement and fear are useful in analysing some of the more controversial socio-economic dynamics of Chinese clusters especially in a traditionally manufactured-based country like Italy, where it’s recognizable a unique paradox of a “double competition” from outside and from inside. This statement poses a serious threat to local economic systems in terms of sustainability and social cohesion, making it necessary to rethink the role and the nature of public action in facing new forms of marginality at urban and regional level.
Resumo:
One of the global phenomena with threats to environmental health and safety is artisanal mining. There are ambiguities in the manner in which an ore-processing facility operates which hinders the mining capacity of these miners in Ghana. These problems are reviewed on the basis of current socio-economic, health and safety, environmental, and use of rudimentary technologies which limits fair-trade deals to miners. This research sought to use an established data-driven, geographic information (GIS)-based system employing the spatial analysis approach for locating a centralized processing facility within the Wassa Amenfi-Prestea Mining Area (WAPMA) in the Western region of Ghana. A spatial analysis technique that utilizes ModelBuilder within the ArcGIS geoprocessing environment through suitability modeling will systematically and simultaneously analyze a geographical dataset of selected criteria. The spatial overlay analysis methodology and the multi-criteria decision analysis approach were selected to identify the most preferred locations to site a processing facility. For an optimal site selection, seven major criteria including proximity to settlements, water resources, artisanal mining sites, roads, railways, tectonic zones, and slopes were considered to establish a suitable location for a processing facility. Site characterizations and environmental considerations, incorporating identified constraints such as proximity to large scale mines, forest reserves and state lands to site an appropriate position were selected. The analysis was limited to criteria that were selected and relevant to the area under investigation. Saaty’s analytical hierarchy process was utilized to derive relative importance weights of the criteria and then a weighted linear combination technique was applied to combine the factors for determination of the degree of potential site suitability. The final map output indicates estimated potential sites identified for the establishment of a facility centre. The results obtained provide intuitive areas suitable for consideration
Resumo:
Urban regions worldwide are increasingly facing the challenge of dealing with highly dynamic metropolitan growth and, at the same time, institutional changes like decentralisation and globalisation. These kinds of changes express themselves most evidently in peri-urban areas, where urban and rural life meets. These peri-urban areas in particular have been the stage for rapid physical, social and economic transformations, both in developed and developing countries. Peri-urbanization takes place here. Based on literature review, this paper presents an effort to identify generic attributes of peri-urbanisation and the way in which development planning tends to reply. Three major attributes are identified: peri-urban space (the spatial expression of peri-urban development), peri-urban life (the functional appearance of land uses, activities and peri-urban innovation), and peri-urban change (a causal and temporal perspective featuring flows and drivers of change). It is also shown that prevalent institutional replies in planning and development generally fail to acknowledge the dynamic and increasingly fragmented attributes of global peri-urbanisation.
Resumo:
El artículo analiza firmas insertas en circuitos globalizados de exportación de frutas frescas, así como la interfase empresas-territorios. Se focaliza en la producción argentina de cítricos dulces y particularmente en un espacio productivo, y se interesa por cómo se traduce la construcción de los circuitos globales en los espacios y actores locales. Para ello, desarrolla una tipología de empresas e indicadores de anclaje y recurre a una combinación de fuentes cuantitativas y cualitativas, con vistas a desentrañar la “caja negra” del comportamiento empresarial. Se concluye que existen diferentes grados de anclaje territorial y combinaciones variables de fijación y movilidad por parte de las empresas. La adopción de una modalidad de agricultura empresarial multilocalizada, orientada al aprovechamiento de las peculiaridades de los diferentes ambientes locales, conduce a la desarticulación de espacios en función de sus características productivas y de sus diversos contextos sociales e institucionales. De esta forma se promueve la conformación de agentes de características flexibles, transformando su reproducción en contingente.
Resumo:
In 2006, a large and prolonged bloom of the dinoflagellate Karenia mikimotoi occurred in Scottish coastal waters, causing extensive mortalities of benthic organisms including annelids and molluscs and some species of fish ( Davidson et al., 2009). A coupled hydrodynamic-algal transport model was developed to track the progression of the bloom around the Scottish coast during June–September 2006 and hence investigate the processes controlling the bloom dynamics. Within this individual-based model, cells were capable of growth, mortality and phototaxis and were transported by physical processes of advection and turbulent diffusion, using current velocities extracted from operational simulations of the MRCS ocean circulation model of the North-west European continental shelf. Vertical and horizontal turbulent diffusion of cells are treated using a random walk approach. Comparison of model output with remotely sensed chlorophyll concentrations and cell counts from coastal monitoring stations indicated that it was necessary to include multiple spatially distinct seed populations of K. mikimotoi at separate locations on the shelf edge to capture the qualitative pattern of bloom transport and development. We interpret this as indicating that the source population was being transported northwards by the Hebridean slope current from where colonies of K. mikimotoi were injected onto the continental shelf by eddies or other transient exchange processes. The model was used to investigate the effects on simulated K. mikimotoi transport and dispersal of: (1) the distribution of the initial seed population; (2) algal growth and mortality; (3) water temperature; (4) the vertical movement of particles by diurnal migration and eddy diffusion; (5) the relative role of the shelf edge and coastal currents; (6) the role of wind forcing. The numerical experiments emphasized the requirement for a physiologically based biological model and indicated that improved modelling of future blooms will potentially benefit from better parameterisation of temperature dependence of both growth and mortality and finer spatial and temporal hydrodynamic resolution.
Resumo:
In 2006, a large and prolonged bloom of the dinoflagellate Karenia mikimotoi occurred in Scottish coastal waters, causing extensive mortalities of benthic organisms including annelids and molluscs and some species of fish ( Davidson et al., 2009). A coupled hydrodynamic-algal transport model was developed to track the progression of the bloom around the Scottish coast during June–September 2006 and hence investigate the processes controlling the bloom dynamics. Within this individual-based model, cells were capable of growth, mortality and phototaxis and were transported by physical processes of advection and turbulent diffusion, using current velocities extracted from operational simulations of the MRCS ocean circulation model of the North-west European continental shelf. Vertical and horizontal turbulent diffusion of cells are treated using a random walk approach. Comparison of model output with remotely sensed chlorophyll concentrations and cell counts from coastal monitoring stations indicated that it was necessary to include multiple spatially distinct seed populations of K. mikimotoi at separate locations on the shelf edge to capture the qualitative pattern of bloom transport and development. We interpret this as indicating that the source population was being transported northwards by the Hebridean slope current from where colonies of K. mikimotoi were injected onto the continental shelf by eddies or other transient exchange processes. The model was used to investigate the effects on simulated K. mikimotoi transport and dispersal of: (1) the distribution of the initial seed population; (2) algal growth and mortality; (3) water temperature; (4) the vertical movement of particles by diurnal migration and eddy diffusion; (5) the relative role of the shelf edge and coastal currents; (6) the role of wind forcing. The numerical experiments emphasized the requirement for a physiologically based biological model and indicated that improved modelling of future blooms will potentially benefit from better parameterisation of temperature dependence of both growth and mortality and finer spatial and temporal hydrodynamic resolution.
Resumo:
This paper discusses some aspects of hunter-gatherer spatial organization in southern South Patagonia, in later times to 10,000 cal yr BP. Various methods of spatial analysis, elaborated with a Geographic Information System (GIS) were applied to the distributional pattern of archaeological sites with radiocarbon dates. The shift in the distributional pattern of chronological information was assessed in conjunction with other lines of evidence within a biogeographic framework. Accordingly, the varying degrees of occupation and integration of coastal and interior spaces in human spatial organization are explained in association with the adaptive strategies hunter-gatherers have used over time. Both are part of the same human response to changes in risk and uncertainty variability in the region in terms of resource availability and environmental dynamics.