964 resultados para Sistema de Internferencia fuzzy
Resumo:
Se da a conocer la presencia del taxon Poa feratiana Boiss. & Reuter en el Sistema Central, Se comenta la corologia del taxon en la Península Ibérica.
Resumo:
Actualmente las empresas requieren estrategias innovadoras, que permitan gestionar de forma integral, optimizando los recursos y maximizando los resultados. Siendo el objetivo del presente trabajo de investigación, diseñar un instrumento de gestión integral (gestión de la calidad, ambiental, seguridad y salud ocupacional) para el sector construcción en Cusco. Se realizó un análisis actual de la actividad de construcción, se planteó a diferencia de otras propuestas, el diseño que inicia con el diagnóstico, planificación, organización, ejecución, supervisión y optimización del sistema integral. Los resultados están expresados en el diagnóstico de los 3 sistemas, información clave, para el planteamiento y propuesta de las etapas posteriores; estructurando el planteamiento de los subprogramas basados en el diagnóstico integral, para finalmente determinar los lineamientos estratégicos, de implementación, evaluación y verificación del sistema, teniendo en cuenta la norma ISO 9001: 2008, ISO 14001:2004 y OSHAS 18001:2007; así como la legislación vigente para el Perú.
Resumo:
A well-cited paper suggesting fuzzy coding as an alternative to the conventional binary, grey and floating-point representations used in genetic algorithms.
Resumo:
The Chilean Cooperative Sector (SCCh) can be explained as a human activity system of high complexity, which seeks to maintain an independent existence, in example, be viable. From this perspective, the Viable System Model (MSV) as conceptual reference presents a real opportunity to study the organization of the cooperative sector in Chile.The central objective of the work refers to study the feasibility of SCCh in a context of sectorial organization, considering the social, legal and economic fabric of the country today.To do this, supported by a systemic methodology were performed: a characterization of the problem situation of the sector -identifying some relevant factors in the areas of market structure, legal regulations and inter cooperation-an organizational diagnosis and proposed a set guidelines for its development.From the above it is concluded that there is relevance between the characteristics of the case study theoretical and methodological approach. The methodology takes tested in other organizational practices such as VIPLAN tools, and applies the SCCh. Its contribution in the field of study is oriented around a holistic view of the organization and promotion of their viability, thereby generating an approach that delivers specific sectorial development strategies, surpassing the approximation of descriptive characterization. Thus, we provide a diagnostic model of the Chilean Cooperative Sector and propose guidelines to support their organizational development.
Resumo:
This paper introduces a recursive rule base adjustment to enhance the performance of fuzzy logic controllers. Here the fuzzy controller is constructed on the basis of a decision table (DT), relying on membership functions and fuzzy rules that incorporate heuristic knowledge and operator experience. If the controller performance is not satisfactory, it has previously been suggested that the rule base be altered by combined tuning of membership functions and controller scaling factors. The alternative approach proposed here entails alteration of the fuzzy rule base. The recursive rule base adjustment algorithm proposed in this paper has the benefit that it is computationally more efficient for the generation of a DT, and advantage for online realization. Simulation results are presented to support this thesis. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with Takagi-Sugeno (TS) fuzzy model identification of nonlinear systems using fuzzy clustering. In particular, an extended fuzzy Gustafson-Kessel (EGK) clustering algorithm, using robust competitive agglomeration (RCA), is developed for automatically constructing a TS fuzzy model from system input-output data. The EGK algorithm can automatically determine the 'optimal' number of clusters from the training data set. It is shown that the EGK approach is relatively insensitive to initialization and is less susceptible to local minima, a benefit derived from its agglomerate property. This issue is often overlooked in the current literature on nonlinear identification using conventional fuzzy clustering. Furthermore, the robust statistical concepts underlying the EGK algorithm help to alleviate the difficulty of cluster identification in the construction of a TS fuzzy model from noisy training data. A new hybrid identification strategy is then formulated, which combines the EGK algorithm with a locally weighted, least-squares method for the estimation of local sub-model parameters. The efficacy of this new approach is demonstrated through function approximation examples and also by application to the identification of an automatic voltage regulation (AVR) loop for a simulated 3 kVA laboratory micro-machine system.