989 resultados para Si2H6-Ge molecular beam epitaxy
Resumo:
The flange technique, suggested by Reynolds72 is simple technique to improve antenna characteristics. Using flange technique we can trim the antenna characteristic by suitably adjusting the flange parameters75. Later corrugated flanges87 are used for beam shaping. The important parameters of the corrugated flanges are (a) flange angle, (b) flange width, (c) flange position, (d) conductivity of the flange, (e) amplitude excitation of the flange elements, (f) period of corrugation etc. Compared to a compound horn the flange technique offers great convenience in trimming antenna characteristics. Horns are commonly used as a feed in radar and satellite communications. A large number of work had been done to improve the characteristics of horn antennas. It is an established fact that grooved walls on the inner surface of a horn can improve the antenna characteristics44. Corrugated comb surface can be used for the circular polarization98, tilt of polarization99 etc. This suggests the possibility to combine these two phenomena and to obtain a resultant beam. This thesis presents the result of an investigation to study the possibility of controlling different antenna characteristics like polarization, beam shaping, matching etc, using corrugated flange techniques.
Resumo:
Due to the tremendous spin-orbit splitting of quasi-molecular levels in superheavy collision systems (Z = Z_1 + Z_2 {\ge\approx} 137) bombarding energy 0.5-6 MeV N{^-1}, unusual couplings may occur around Z \simeq 165. Experimental evidence for such a theoretically predicted coupling is discussed.
Resumo:
The real-time dynamics of molecular (Na_2 . Na_3) and cluster Na_n (n=4-2l) multiphoton ionization and -fragmentation has been studied in beam experiments applying femtosecond pump-probe techniques in combination with ion and electron spectroscopy. Wave packet motion in the dimer Na_2 reveals two independent multiphoton ionization processes while the higher dimensional motion in the trimer Na_3 reflects the chaotic vibrational motion in this floppy system. The first studies of cluster properties (energy, bandwidth and lifetime of intermediate resonances Na^*_n) ) with femtosecond laser pulses give a striking illustration of the transition from "molecule-like" excitations to "surfaceplasma"-like resonances for increasing cluster sizes. Time-resolved fragmentation of cluster ions Na_n^* indicate that direct photo-induced fragmentation processes are more important at short times than the statistical unimolecular decay.
Resumo:
The structures of trimethylchlorogermane ((CH3)(3)GeCl) and trimethylbromogermane ((CH3)(3)GeBr) have been determined by gas-phase electron diffraction (GED), augmented by the results from ab initio calculations employing second-order Moller-Plesset (MP2) level of theory and the 6-311+G(d) basis set. All the electrons were included in the correlation calculation. The results from the ab initio calculations indicated that these molecules have C-3v symmetry, and models with this symmetry were used in the electron diffraction analysis. The results for the principal distances (r(g)) and angles (angle(alpha)) from the combined GED/ab initio study of trimethylchlorogermane (with estimated 2sigma uncertainties) are: r(Ge-C) = 1.950(4) Angstrom, r(Ge-Cl) = 2.173(4) Angstrom, r(C-H) = 1.090(9) Angstrom, angleCGeC = 112.7(7)degrees, angleCGeCl = 106.0(8)degrees, angleGeCH = 107.8(12)degrees. The results for the principal distances (r(g)) and angles (angle(alpha)) from the combined GED/ab initio study of trimethylbromogermane (with estimated 2sigma uncertainties) are: r(Ge-C) = 1.952(7) Angstrom, r(Ge-Br) = 2.325(4) Angstrom, r(C-H) = 1. 140(28) Angstrom, angleCGeC = 114.2(11)degrees, angleCGeBr = 104.2(13)degrees, angleGeCH 106.9(43)degrees. Local C-3v symmetry and staggered conformation were assumed for the methyl groups.
Resumo:
The adsorption of carbon monoxide on the Pt{110} surface at coverages of 0.5 ML and 1.0 ML was investigated using quantitative low-energy electron diffraction (LEED IV) and density-functional theory (DFT). At 0.5 ML CO lifts the reconstruction of the clean surface but does not form an ordered overlayer. At the saturation coverage, 1.0 ML, a well-ordered p(2×1) superstructure with glide line symmetry is formed. It was confirmed that the CO molecules adsorb on top of the Pt atoms in the top-most substrate layer with the molecular axes tilted by ±22° with respect to the surface normal in alternating directions away from the close packed rows of Pt atoms. This is accompanied by significant lateral shifts of 0.55 Å away from the atop sites in the same direction as the tilt. The top-most substrate layer relaxes inwards by −4% with respect to the bulk-terminated atom positions, while the consecutive layers only show minor relaxations. Despite the lack of long-range order in the 0.5 ML CO layer it was possible to determine key structural parameters by LEED IV using only the intensities of the integer-order spots. At this coverage CO also adsorbs on atop sites with the molecular axis closer to the surface normal (b10°). The average substrate relaxations in each layer are similar for both coverages and consistent with DFT calculations performed for a variety of ordered structures with coverages of 1.0 ML and 0.5 ML.
Resumo:
The introduction of high-permittivity gate dielectric materials into complementary metal oxide semiconductor technology has reopened the interest in Ge as a channel material mainly due to its high hole mobility. Since HfO(2) and ZrO(2) are two of the most promising dielectric candidates, it is important to investigate if Hf and Zr may diffuse into the Ge channel. Therefore, using ab initio density functional theory calculations, we have studied substitutional and interstitial Hf and Zr impurities in c-Ge, looking for neutral defects. We find that (i) substitutional Zr and Hf defects are energetically more favorable than interstitial defects; (ii) under oxygen-rich conditions, neither Zr nor Hf migration towards the channel is likely to occur; (iii) either under Hf- or Zr-rich conditions it is very likely, particularly for Zr, that defects will be incorporated in the channel.
Resumo:
Irradiation with heavy ions can produce several modifications in the chain structure of polymers. These modifications can be related to scissioning and cross-linking of chemical bonds. which depend on the ion fluence and the density of energy deposited in the material. Stacked thin film Makrofol-KG (R) samples were irradiated with 350 MeV Au(26+) ions and FTIR absorption spectroscopy was used to determine the bond changes in the samples. Data on the absorption bands as a function of the fluence indicated a higher probability for simple-bonds scissioning than for double-bonds scissioning and no dependence on the number of double bonds breaking with ion fluence. Since sample irradiation was done in a non-track-overlapping regime, a novel process for double bonds formation is suggested: the excitation of a site in the material by only one incident ion followed by a double bond formation during the de-excitation process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We propose a coherent beam splitter for polarized heteronuclear molecules based on a stimulated Raman adiabatic passage scheme that uses a tripod linkage of electrotranslational molecular states. We show that for strongly polarized molecules the rotational dynamics imposes significantly larger Rabi frequencies than would otherwise be expected, but within this limitation, a full transfer of the molecules to two counterpropagating ground-state wave packets is possible.
Resumo:
The surface modifications induced on Teflon FEP and Mylar C polymer films by a low energy electron beam are probed using Raman and FTIR spectroscopy. The electron beam, which does not affect the Mylar C, surface, may break the copolymer chain into its monomers degrading the Teflon FEP surface. For Mylar C the electron beam decreases the roughness of the polymer surface. This difference in behavior may explain recent results in which the surface modifications investigated by measuring the second crossover energy shift in the electronic emission curve differed for the two polymers (Chinaglia et al [1]). In addition, the Raman data showed no evidence of carbon formation for either polymer samples, which is explained by the fact that only a low energy electron beam is used.
Resumo:
Glassy films of Ga10Ge25S65 with 4 mu m thickness were deposited on quartz substrates by electron beam evaporation. Photoexpansion (PE) (photoinduced increase in volume) and photobleaching (PB) (blue shift of the bandgap) effects have been examined. The exposed areas have been analyzed using perfilometer and an expansion of 1.7 mu m (Delta V/V approximate to 30%) is observed for composition Ga10Ge25S65 exposed during 180 min and 3 mW/cm(2) power density. The optical absorption edge measured for the film Ge25Ga10S65 above and below the bandgap show that the blue shift of the gap by below bandgap photon illumination is considerable higher (Delta E-g = 440 meV) than Delta E-g induced by above bandgap illumination (Delta E-g = 190 meV). The distribution of the refraction index profile showed a negative change of the refraction index in the irradiated samples (Delta n = -0.6). The morphology was examined using a scanning electron microscopy (SEM). The chemical compositions measured using an energy dispersive analyzer (EDX) indicate an increase of the oxygen atoms into the irradiated area. Using a Lloyd's mirror setup for continuous wave holography it was possible to record holographic gratings using the photoinduced effects that occur in them. Diffraction efficiency up to 25% was achieved for the recorded gratings and atomic force microscopy images are presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The CMS Hadron Calorimeter in the barrel, endcap and forward regions is fully commissioned. Cosmic ray data were taken with and without magnetic field at the surface hall and after installation in the experimental hall, hundred meters underground. Various measurements were also performed during the few days of beam in the LHC in September 2008. Calibration parameters were extracted, and the energy response of the HCAL determined from test beam data has been checked. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
This paper discusses the design and performance of the time measurement technique and of the synchronization systems of the CMS hadron calorimeter. Time measurement performance results are presented from test beam data taken in the years 2004 and 2006. For hadronic showers of energy greater than 100 GeV, the timing resolution is measured to be about 1.2 ns. Time synchronization and out-of-time background rejection results are presented from the Cosmic Run At Four Tesla and LHC beam runs taken in the Autumn of 2008. The inter-channel synchronization is measured to be within 2 ns. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The photosensitivity of GeSx binary glasses in response to irradiation to femtosecond pulses at 800 nm is investigated. Samples with three different molecular compositions were irradiated under different exposure conditions. The material response to laser exposure was characterized by both refractometry and micro-Raman spectroscopy. It is shown that the relative content of sulfur in the glass matrix influences the photo-induced refractive index modification. At low sulfur content, both positive and negative index changes can be obtained while at high sulfur content, only a positive index change can be reached. These changes were correlated with variations in the Raman response of exposed glass which were interpreted in terms of structural modifications of the glass network. Under optimized exposure conditions, waveguides with positive index changes of up to 7.8x10−3 and a controllable diameter from 14 to 25 μm can be obtained. Direct inscription of low insertion losses (IL = 3.1 – 3.9 dB) waveguides is demonstrated in a sample characterized by a S/Ge ratio of 4. The current results open a pathway towards the use of Ge-S binary glasses for the fabrication of integrated mid-infrared photonic components.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)