922 resultados para Room-temperature ferromagnetic properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline BaxSr1-xTiO3 (x = 0.4 and 0.8) thin films with a perovskite structure were prepared by the polymeric precursor method on a platinum-coated silicon substrate. High-quality thin films with uniform composition and thickness were successfully produced by dip-coating and spin-coating techniques. The resulting thin films prepared by dip and spin-coating showed a well-developed dense polycrystalline structure with uniform grain size distribution. The metal-BST-metal structure of the thin films displays good dielectric and ferroelectric properties. The ferroelectric nature to BaxSr1-xTiO3 (x = 0.8) thin film, indicated by butterfly-shaped C-V curves and confirmed by the hysteresis curve, showed 2P(r) = 5.0 muC/cm(2) and E-c = 20 kV/cm. The capacitance-frequency curve reveals that the dielectric constant may reach a value of up to 794 at 1 kHz. on the other hand, the BaxSr1-xTiO3 (x = 0.4) thin films had paraelectric nature and dielectric constant and the dissipation factor at a frequency of 100 kHz were 680 and 0.01, respectively, for film annealed at 700 degreesC. In addition, an examination of the film's I-V curve at room temperature revealed the presence of two conduction regions in the BaxSr1-xTiO3 (x = 0.4 and 0.8) thin films, showing ohmic-like behavior at low voltage and a Schottky-emission or Poole-Frenkel mechanism at high voltage. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electric properties of the sodium niobate perovskite ceramic were investigated by impedance spectroscopy in the frequency range from 5 Hz to 13 MHz and from room temperature up to 1073 K, in a thermal cycle. Both capacitance and conductivity exhibit an anomaly at around 600 K as a function of the temperature and frequency. The electric conductivity as a function of angular frequency sigma(omega) follows the relation sigma(omega)=Aomega(s). The values of the exponent s lie in the range 0.15less than or equal tosless than or equal to0.44. These results were discussed considering the conduction mechanism as being a type of polaron hopping. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undoped and indium-doped Zinc oxide (ZnO) solid films were deposited by the pyrosol process at 450 degrees C on glass substrates From solutions where In/Zn ratio was 2, 5, and 10 at.%. Electrical measurements performed at room temperature show that the addition of indium changes the resistance of the films. The resistivities of doped films are less than non-doped ZnO films by one to two orders of magnitude depending on the dopant concentration in the solution. Preferential orientation of the films with the c-axis perpendicular to the substrate was detected by X-ray diffraction and polarized extended X-ray absorption fine structures measurements at the Zn K edge. This orientation depends on the indium concentration in the starting solution. The most textured films were obtained for solutions where In/Zn ratio was 2 and 5 at.%. When In/Zn = 10 at.%, the films had a nearly random orientation of crystallites. Evidence of the incorporation of indium in the ZnO lattice was obtained from extended X-ray absorption fine structures at the In and Zn K edges. The structural analysis of the least resistive film (Zn/In = 5 at.%) shows that In substitutes Zn in the wurtzite structure. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferroelectric Pb1-xCaxTiO3 (x = 0.24) thin films were formed on a Pt/Ti/SiO2/Si substrate by the polymeric precursor method using the dip-coating technique for their deposition. Characterization of the films bq X-ray diffraction showed a perovskite single phase with a tetragonal structure after annealing at 700 degreesC. Atomic force microscopy (AFM) analyses showed that the film had a smooth and crack-free surface with low surface roughness. In addition, the PCT thin film had a granular structure with an 80 nm grain size. The thickness of the films observed by the scanning electron microscopy (SEM) is 550 nm and there is a good adhesion between the film and substrate. For the electrical measurements metal-ferroelectric-metal of the type capacitors were obtained, where the thin films showed good dielectric and ferroelectric properties. The dielectric constant and dissipation factor at 1 kHz and measured at room temperature were found to be 457 and 0.03. respectively. The remanent polarization and coercive field for the: deposited films were P-r = 17 muC/cm(2) and E-c = 75 kV/cm, respectively. Moreover. The 550-nm-thick film showed a current density in the order of 10(-8) A/cm(2) at the applied voltage of 2 V. The high values of the thin film's dielectric properties are attributed to its excellent microstructural quality and the chemical homogeneity obtained by the polymeric precursor method. (C) 2001 Elsevier science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BaxSr1-xTiO3 (x = 0.6) (BST) thin films were successfully prepared on a Pt(111)/TiO2/SiO2/Si(100) substrate by spin coating, using the polymeric precursor method. BST films with a perovskite single phase were obtained after heat treatment at 700 degrees C. The multilayer BST thin films had a granular structure will a grain size of approximately 60 nm. A 480-nm-thick film was obtained by carrying out five cycles of the spin-coating/heating process. Scanning electron microscopy and atomic force microscopy analyses showed that the thin films had a smooth, dense, crack-free surface with low surface roughness (3.6 nm). At room temperature and at a frequency of 100 kHz, the dielectric constant and the dissipation factor were, respectively, 748 and 0.042. The high dielectric constant value was due to the high microstructural quality and chemical homogeneity of the thin films obtained by the polymeric precursor method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barium strontium titanate (Ba0.8Sr0.2TiO3) thin films have been prepared on Pt/Ti/SiO2/Si substrates using a soft solution processing. X-ray diffraction and also micro-Raman spectroscopy showed that the Ba0.8Sr0.2TiO3 thin films exhibited a tetragonal structure at room temperature. The presence of Raman active modes was clearly shown at the 299 and 725 cm(-1) peaks. The tetragonal-to-cubic phase transition in the Ba0.8Sr0.2TiO3 thin films is broadened, and suppressed at about 35 degreesC, with a maximum dielectric constant of 948 (100 kHz). Electrical measurements for the prepared Ba0.8Sr0.2TiO3 thin films showed a remnant polarization (P-r) of 6.5 muC/cm(2), a coercive field (E-c) of 41 kV/cm, and good insulating properties. The dispersion of the refractive index is interpreted in terms of a single electronic oscillator at 6.97 eV. The direct band gap energy (E-g) and the refractive index (n) are estimated to be 3.3 eV and n = 2.27-2.10, respectively. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystallized boehmite gamma-AlOOH center dot nH(2)O had been synthesized by spray-drying (SD) of a solution of aluminium tri-sec-butoxide peptized by nitric acid. The sub-micronic spherical particles obtained had an average diameter of 500 nm and were built of 100 nm or less platelet-like sub-particles. The average crystallite size calculated from XRD was 1.6 nm following the b axis (i.e. one unit cell) and 3-4 nm perpendicular to b. As a result of the nanometric sizes of crystallites, there was a large surface free for water adsorption and it was found to be n = 1.18 +/- 0.24H(2)O per AlOOH. The SD spheres spontaneously dispersed in water at room temperature and formed stable-over months-suspensions with nanometre-size particles (25-85 nm). Luminescent europium-doped nanocrystallized boehmites AlOOH: Eu (Al0.98Eu0.02OOH center dot nH(2)O) were synthesized the same way by SD and demonstrated the same crystallization properties and morphologies as the undoped powders. It is inferred from the Eu3+ luminescence spectroscopy that partly hydrated europium species are immobilized on the boehmite nanocrystals where they are directly bonded to alpha(OH) groups of the AlOOH surface. The europium coordination is schematically written [Eu3+(OH)(alpha)(H2O)(7-alpha/2)]. The europium-doped boehmite from SD spontaneously dispersed in water: the luminescence spectroscopy proves that most of the Eu3+ ions were detached from the NPs during water dispersion. The AlOOH: Eu nanoparticles were modified by the amine acid asparagine (ASN). The modification aimed to render the NPs compatible for further bio-functionalization. After surface modification, the NPs easily dispersed in water; the luminescence spectra after dispersion prove that the Eu3+ ions were held at the boehmite surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polymeric precursor method was employed in the preparation of PZT thin films on Pt(111)Ti/SiO2/Si(100) substrates. X-ray diffraction patterns revealed the polycrystalline nature of the PZT (53:47) thin films, which had a granular structure and a grain size of approximately 70 nm. A 350-nm thick film was obtained by running three cycles of the dip-coating/heating process. Atomic force microscopy (AFM) analyses showed the surface of these thin films to be smooth, dense and crack-free with low surface roughness (= 2.0 nm). The PZT (53:47) thin films annealed at 700 degreesC showed a well-saturated hysteresis loop. The C-V curves of perovskite thin film displayed normal ferroelectric behavior, while the remanent polarization (2P(r)) and coercive field (E-e) of the film deposited and measured at room temperature were 40 muC/cm(2) and 110 kV/cm, respectively. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that the dielectric properties of BaTiO3 (BT) are strongly dependent on its grain size. Coarse-grained ceramics of pure BT showed lower dielectric constant at room temperature then fine grained. Many authors considered that when the grain size is lower than 700 nm, the lattice of BT changes from tetragonal to pseudocubic, and the dielectric constant value is very low. In the doped BT this effect is more complex, because it is necessary to consider also the influence of dopants. The grain size effect on the structure and dielectric properties of niobium-doped barium titanate was investigated. Niobium-doped barium titanate was prepared from powders obtained by doping of commercial barium titanate and from organometallic complex using citrates as precursors (Pechini procedure). The crystal and microstructure of sintered niobium-doped barium titanate were determined. Dielectric constant and dissipation factor were measured. The observation confirmed that the structure and properties are strongly dependent on grain size. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the effect of bismuth content on the crystal structure, morphology and electric properties of barium-bismuth-tantalate (BBT) ceramics was explored with the aid of X-ray diffraction (XRD), scanning electron microcopy (SEM), dielectric properties and ferroelectric hysteresis loops. BaBi2Ta2O9 (BBT) ceramics have been successfully prepared by the solid-state reaction. The BBT phase was crystallized at 900 degreesC for 2 h. The excess of bismuth controls the grain size, affecting the density of the material. Measurements of dieletric constant and dieletric losses confirm that the material is a ferroeletric with a Curie temperature around 77 degreesC. The dieletric constant measured at room temperature was 400, with a dielectric loss of 0.03. Both the phase-transition behaviour and ferroelectric properties, such as spontaneous polarization (P-s), showed a dependence on Bi content. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and the ionic conduction properties of siloxane-poly(oxypropylene) (PPO) hybrids doped with different potassium salts (KCF3SO3, KI, KClO4 and KNO2) are reported for two polymer molecular weights (300 and 4000 g/mol), labelled PPO300 and PPO4000, respectively. The doping concentration, related to the concentration of the ether type oxygen of the PPO chain, is the same whatever the salt and verifies [O]/[K] = 20. Ionic room temperature conductivity shows the highest value for the KCF3SO3 doped PPO4000 hybrid (4 x 10(-7)Omega(-1).cm(-1)). The structure of these hybrids was investigated by X-ray powder diffraction (XRPD) and X-ray absorption spectroscopy (EXAFS and XANES) at the potassium K-edge (3607 eV). XRPD results show that the hybrid matrix is always amorphous and the formation of secondary potassium phases is observed for all the samples, except for the KCF3SO3 doped PPO4000 hybrid. EXAFS results evidence a good correlation between the ionic conductivity and the presence of oxygen atoms as first neighbours around potassium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanochemical synthesis was applied to obtain nanocrystalline powders of composition Pb(Zr0.52Ti0.48)O-3 (PZT). Milling was performed in a planetary ball mill using vials and balls made of zirconia or steel-in order to investigate influence of milling media on the electrical properties of resulting ceramics. PZT ceramics showed high values for dielectric constant (epsilon(r)), reaching 970 at room temperature, as well as low dielectric loss (tandelta) under the optimal processing conditions. High values of remanent polarization (P-r) indicate high internal polarizability. The best samples showed piezoelectric strain constant d(33) = 347 pC/N and planar coupling factor k(P) = 0.44. Milling in ZrO2 medium prevents powder contamination and provides reproducibility of milling process. Also, PZT obtained from the powders milled in ZrO2 exhibited lower values of dielectric loss, in comparison with the PTZ obtained from the powders milled in Fe. This suggests that contamination of the powder with Fe could result in an increase of conductivity in final product. (C) 2004 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra-fine powders of Na1-xLixNbO3 (x=0; 0.06; 0.09; 0.12) were synthesized by the Polymeric Precursors Method. Such powders had their orthorhombic structures determined by X-ray diffraction and their surface area determined by BET isotherms (less than 10 m(2) g(-1)). Densification was followed by dilatometric study. The powders, calcined at 700 degrees C for 5 h, were sintered at 1290 degrees C during 2 h under ambient atmosphere with no application of extra pressure. The samples with relative densities higher than 95% were analyzed by impedance spectroscopy at room temperature, under a signal amplitude of 1 V-rms. Dielectric constants of about 180 and dielectric loss factor of about 0.03 were measured showing small dependence with frequency. The electrical properties were similar to those obtained for samples sintered by hot pressing. (C) 1999 Elsevier B.V. Limited and Techna S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports the changes in the optical properties produced by annealing of amorphous GaAs at temperatures smaller than or just sufficient to produce crystallization of the material. The films were grown by the flash evaporation technique on glass substrates at room temperature. Optical and structural changes of our samples were monitored through photothermal deflection spectroscopy, optical transmittance and reflectance and X-ray diffraction (XRD). The structural results from XRD detected no crystallization of the films for temperatures up to 240 degreesC. We have observed consistent changes in the optical gap and Urbach energy of the annealed film. The optical gap increases with increasing annealing temperature from 1.17 to 1.32 eV. The Urbach energy decrease from 120 meV (as-grown film) to 105 meV (anneal at 200 degreesC). We propose that these changes are due to a diminution of the tail state defects and/or the relaxation of strained bonds. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium-modified lead titanate (PST) thin films with composition Pb1-xSrxTiO3 (0.10 < x &LE; 0.60) were grown on Pt/Ti/SiO2/Si substrates using a soft chemical process. The crystallization of the PST thin films was achieved by heat treatment at 600&DEG;C. The structural and microstructural modifications in the films were studied using X-ray diffraction (XRD) and atomic force microscopy, respectively. The XRD study shows that the lattice parameters of polycrystalline PST thin films calculated from X-ray data indicate a decrease in lattice tetragonality with the increase in strontium content in these films. This indicates a gradual change from tetragonal to cubic structure. By atomic force microscopy analysis, the average grain size of the thin films was systematically reduced with the increase in Sr content. The dielectric property of the thin films was found to be strongly dependent on the Sr concentration. With 60 at.% Sr content, a ferroelectric to paraelectric phase transition was observed at room temperature.