989 resultados para Reputation systems
Resumo:
Extant models of decision making in social neurobiological systems have typically explained task dynamics as characterized by transitions between two attractors. In this paper, we model a three-attractor task exemplified in a team sport context. The model showed that an attacker–defender dyadic system can be described by the angle x between a vector connecting the participants and the try line. This variable was proposed as an order parameter of the system and could be dynamically expressed by integrating a potential function. Empirical evidence has revealed that this kind of system has three stable attractors, with a potential function of the form V(x)=−k1x+k2ax2/2−bx4/4+x6/6, where k1 and k2 are two control parameters. Random fluctuations were also observed in system behavior, modeled as white noise εt, leading to the motion equation dx/dt = −dV/dx+Q0.5εt, where Q is the noise variance. The model successfully mirrored the behavioral dynamics of agents in a social neurobiological system, exemplified by interactions of players in a team sport.
Resumo:
This paper proposes a recommendation system that supports process participants in taking risk-informed decisions, with the goal of reducing risks that may arise during process execution. Risk reduction involves decreasing the likelihood and severity of a process fault from occurring. Given a business process exposed to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a process participant needs to provide input to the process, e.g. by selecting the next task to execute or by filling out a form, we suggest to the participant the action to perform which minimizes the predicted process risk. Risks are predicted by traversing decision trees generated from the logs of past process executions, which consider process data, involved resources, task durations and other information elements like task frequencies. When applied in the context of multiple process instances running concurrently, a second technique is employed that uses integer linear programming to compute the optimal assignment of resources to tasks to be performed, in order to deal with the interplay between risks relative to different instances. The recommendation system has been implemented as a set of components on top of the YAWL BPM system and its effectiveness has been evaluated using a real-life scenario, in collaboration with risk analysts of a large insurance company. The results, based on a simulation of the real-life scenario and its comparison with the event data provided by the company, show that the process instances executed concurrently complete with significantly fewer faults and with lower fault severities, when the recommendations provided by our recommendation system are taken into account.
Resumo:
Prefabricated housing innovations have the potential to reduce the environmental impact of construction through improving efficiency and quality. The current paper systematically summarises the published evidence since 1990 that describes the barriers and drivers affecting the uptake of prefabricated housing innovations. These are discussed in relation to a ‘Project-Based Product Framework’ which considers multiple stakeholders including builders and other intermediaries, suppliers, end-users, the broader policy context and technical issues. The framework facilitated identification of central issues such as the prevalent business and cultural resistance associated with process changes; the potential for efficiency and quality improvements and cost savings; the simultaneous risks and benefits of close supplier-builder relationships, and negative user perceptions towards prefabricated houses. Though there is a lack of evidence regarding the effects of regulations and government policies on prefabrication uptake, there are indications of the positive potential of financial and social incentives. Directions for further research include understanding how to: manage the industry’s transition to prefabricated houses; appropriately compare prefabricated housing to traditional housing on cost, efficiency and quality measures; reconcile the differing perspectives of various stakeholders; quantify and identify the perspectives of the potential end-user population, and manage the interface between the emerging industry and information technology improvements.
Resumo:
Formal incentives systems aim to encourage improved performance by offering a reward for the achievement of project-specific goals. Despite argued benefits of incentive systems on project delivery outcomes, there remains debate over how incentive systems can be designed to encourage the formation of strong project relationships within a complex social system such as an infrastructure project. This challenge is compounded by the increasing emphasis in construction management research on the important mediating influence of technical and organisational context on project performance. In light of this challenge, the research presented in this paper focuses on the design of incentive systems in four infrastructure projects: two road reconstructions in the Netherlands and two building constructions in Australia. Based on a motivational theory frame, a cross case analysis is conducted to examine differences and similarities across social and cultural drivers impacting on the effectiveness of the incentive systems in light of infrastructure project context. Despite significant differences in case project characteristics, results indicate the projects’ experience similar social drivers impacting on incentive effectiveness. Significant value across the projects was placed on: varied performance goals and multiple opportunities to across the project team to pursue incentive rewards; fair risk allocation across contract parties; value-driven tender selection; improved design-build integration; and promotion of future work opportunities. However, differences across the contexts were identified. Results suggest future work opportunities were a more powerful social driver in upholding reputation and establishing strong project relationships in the Australian context. On the other hand, the relationship initiatives in the Dutch context seemed to be more broadly embraced resulting in a greater willingness to collaboratively manage project risk. Although there are limitations with this research in drawing generalizations across two sets of case projects, the results provide a strong base to explore the social and cultural influences on incentive effectiveness across different geographical and contextual boundaries in future research.
Resumo:
Hybrid powerplants combining internal combustion engines and electric motor prime movers have been extensively developed for land- and marine-based transport systems. The use of such powerplants in airborne applications has been historically impractical due to energy and power density constraints. Improvements in battery and electric motor technology make aircraft hybrid powerplants feasible. This paper presents a technique for determining the feasibility and mechanical effectiveness of powerplant hybridisation. In this work, a prototype aircraft hybrid powerplant was designed, constructed and tested. It is shown that an additional 35% power can be supplied from the hybrid system with an overall weight penalty of 5%, for a given unmanned aerial system. A flight dynamic model was developed using the AeroSim Blockset in MATLAB Simulink. The results have shown that climb rates can be improved by 56% and endurance increased by 13% when using the hybrid powerplant concept.
Resumo:
Oscillations of neural activity may bind widespread cortical areas into a neural representation that encodes disparate aspects of an event. In order to test this theory we have turned to data collected from complex partial epilepsy (CPE) patients with chronically implanted depth electrodes. Data from regions critical to word and face information processing was analyzed using spectral coherence measurements. Similar analyses of intracranial EEG (iEEG) during seizure episodes display HippoCampal Formation (HCF)—NeoCortical (NC) spectral coherence patterns that are characteristic of specific seizure stages (Klopp et al. 1996). We are now building a computational memory model to examine whether spatio-temporal patterns of human iEEG spectral coherence emerge in a computer simulation of HCF cellular distribution, membrane physiology and synaptic connectivity. Once the model is reasonably scaled it will be used as a tool to explore neural parameters that are critical to memory formation and epileptogenesis.