989 resultados para Recognition ethics
Resumo:
We report a novel label-free method for the investigation of the adaptive recognition of small molecules by nucleic acid aptamers using capillary electrophoresis analysis. Cocaine and argininamide were chosen as model molecules, and the two corresponding DNA aptamers were used. These single-strand DNAs folded into their specific secondary structures, which were mainly responsible for the binding of the target molecules with high affinity and specificity. For molecular recognition, the nucleic acid structures then underwent additional conformational changes, while keeping the target molecules stabilized by intermolecular hydrogen bonds. The intrinsic chemical and physical properties of the target molecules enabled them to act as indicators for adaptive binding. Thus any labeling or modification of the aptamers or target molecules were made obsolete. This label-free method for aptamer-based molecular recognition was also successfully applied to biological fluids and therefore indicates that this approach is a promising tool for bioanalysis.
Resumo:
SERS aptasensors for protein recognition based on Au nanoparticles labeled with aptamers and Raman reporters have been developed, which opens a new way for protein recognition of high sensitivity and selectivity.
Resumo:
In this work, we report a simple and effective investigation into adaptive interactions between guanine-rich DNA aptamers and amino acid amides by CE with electrochemical (EC) detection. Argininamide (Arm) and tyrosinamide (Tym) were chosen as model molecules. On a copper electrode, Arm generated a good EC signal in 60 mM NaOH at 0.7 V (vs Ag/ AgCl), while Tym. was detected well on a platinum electrode at 1. 3 V in 20 mM phosphate of pH 7.0. Based on their EC properties, the ligands themselves were used as indicators for the adaptive interactions investigated by CE-EC, making any step of labeling and/or modification of aptamers with indicators exempted. Hydrophilic ionic liquid was used as an additive in running buffer of CE to improve the sensitivity of Arm detection, whereas the additive was not used for Tym. detection due to its negative effect. Two guanine-rich DNA aptamers were used for molecular recognition of Arm and Tym. When the aptamers were incubated with ligands, they bound the model molecules with high affinity and specificity, reflected by obvious decreases in the signals of ligands but no changes in those of the control molecules. However, the ligands were hardly affected by the control ssDNAs after incubation. The results revealed the specific recognition of Arm and Tym. by the aptamers.
Resumo:
An aptamer-based label-free approach to hemin recognition and DNA assay using capillary electrophoresis with chemiluminescence detection is introduced here. Two guanine-rich DNA aptamers were used as the recognition element and target DNA, respectively. In the presence of potassium ions, the two aptamers folded into the G-quartet structures, binding hemin with high specificity and affinity. Based on the G-quartet-hemin interactions, the ligand molecule was specifically recognized with a K (d)approximate to 73 nM, and the target DNA could be detected at 0.1 mu M. In phosphate buffer of pH 11.0, hemin catalyzed the H2O2-mediated oxidation of luminol to generate strong chemiluminescence signal; thus the target molecule itself served as an indicator for the molecule-aptamer interaction, which made the labeling and/or modification of aptamers or target molecules unnecessary. This label-free method for molecular recognition and DNA detection is therefore simple, easy, and effective.
Resumo:
Combining a single-molecule study of protein binding with a coarse grained molecular dynamics model including solvent (water molecules) effects, we find that biomolecular recognition is determined by flexibilities in addition to structures. Our single-molecule study shows that binding of CBD (a fragment of Wiskott-Aldrich syndrome protein) to Cdc42 involves bound and loosely bound states, which can be quantitatively explained in our model as a result of binding with large conformational changes. Our model identified certain key residues for binding consistent with mutational experiments. Our study reveals the role of flexibility and a new scenario of dimeric binding between the monomers: first bind and then fold.
Resumo:
Biomolecular associations often accompanied by large conformational changes, sometimes folding and unfolding. By exploring an exactly solvable model, we constructed the free energy landscape and established a general framework for studying the biomolecular flexible binding process. We derived an optimal criterion for the specificity and function for flexible biomolecular binding where the binding and conformational folding are coupled.
Resumo:
The thermal stability and ligand binding properties of the L-argininamide-binding DNA aptamer (5'-GATCGAAACGTAGCGCCTTCGATC3') were studied by spectroscopic and calorimetric methods. Differential calorimetric studies showed that the uncomplexed aptamer melted in a two-state reaction with a melting temperature T-m = 50.2 +/- 0.2 degrees C and a folding enthalpy Delta H degrees(fold) = -49.0 +/- 2.1 kcal mol(-1). These values agree with values of T-m = 49.6 degrees C and Delta H degrees(fold) = -51.2 kcal mol(-1) predicted for a simple hairpin structure. Melting of the uncomplexed aptamer was dependent upon salt concentration, but independent of strand concentration. The T of aptamer melting was found to increase as L-argininamide concentrations increased. Analysis of circular dichroism titration data using a single-site binding model resulted in the determination of a binding free energy Delta G degrees(bind) = -5.1 kcal mol(-1). Isothermal titration calorimetry studies revealed an exothermic binding reaction with Delta H degrees(bind) = -8.7 kcal mol(-1). Combination of enthalpy and free energy produce ail unfavorable entropy of -T Delta S degrees = +3.6 kcal mol(-1). A molar heat capacity change of -116 cal mol(-1) K-1 was determined from calorimetric measurements at four temperatures over the range of 15-40 degrees C. Molecular dynamics simulations were used to explore the structures of the unligated and ligated aptamer structures.
Resumo:
We reported here four structures of lanthanide-amino acid complexes obtained under near physiological pH conditions and their individual formula can be described as [Tb-2(DL-Cys)(4)(H2O)(8)]Cl-2 (1), [Eu-4(mu(3)-OH)(4)(L-Asp)(2)(L-HAsp)(3)(H2O)(7)] Cl center dot 11.5H(2)O (2), [Eu-8-(L-HVal) (16)(H2O)(32)]Cl-24 center dot 12.5H(2)O (3), and [Tb-2(DL-HVal)(4)(H2O)(8)]Cl-6 center dot 2H(2)O (4). These complexes showed diverse structures and have shown potential application in DNA detection. We studied the interactions of the complexes with five single-stranded DNA and found different fluorescence enhancement, binding affinity and binding stoichiometry when the complexes are bound to DNA.
Resumo:
Pattern recognition methods were applied to the analysis of 600 MHz H-1 NMR spectra of urine from rats dosed with compounds that induced organ-specific damage in the liver and kidney. Male Wistar rats were separated into groups (n=4) and each was treated with one of following compounds: HgCl2, CCl4, Lu(NO3)(3) and Changle (a kind of rare earth complex mixed with La, Ce, Pr and Nd). Urine samples from the rats dosed with HgCl2, CCl4 and Lu(NO3)(3) were collected over a 24 h time course and the samples from the rats administrated with Changle were gained after 3 months. These samples were measured by 600 MHz NMR spectroscopy. Each spectrum was data-processed to provide 223 intensity-related descriptors of spectra. Urine spectral data corresponding to the time intervals, 0-8 h (HgCl2 and CCl4), 4-8 (Lu(NO3)(3)) h and 90 d (Changle) were analyzed using principal component analysis (PCA). Successful classification of the toxicity and biochemical effects of Lu(NO3)(3) was achieved.
Resumo:
Biomolecular recognition often involves large conformational changes, sometimes even local unfolding. The identification of kinetic pathways has become a central issue in understanding the nature of binding. A new approach is proposed here to study the dynamics of this binding-folding process through the establishment of a path-integral framework on the underlying energy landscape. The dominant kinetic paths of binding and folding can be determined and quantified. The significant coupling between the binding and folding of biomolecules often exists in many important cellular processes. In this case, the corresponding kinetic paths of binding are shown to be intimately correlated with those of folding and the dynamics becomes quite cooperative. This implies that binding and folding happen concurrently. When the coupling between binding and folding is weak (strong), the kinetic process usually starts with significant folding (binding) first, with the binding (folding) later proceeding to the end. The kinetic rate can be obtained through the contributions from the dominant paths. The rate is shown to have a bell-shaped dependence on temperature in the concentration-saturated regime consistent with experiment. The changes of the kinetics that occur upon changing the parameters of the underlying binding-folding energy landscape are studied.
Resumo:
The molecular spectroscopy (including near infrared diffuse reflection spectroscopy, Raman spectroscopy and infrared spectroscopy) with OPUS/Ident software was applied to clustering ginsengs according to species and processing methods. The results demonstrate that molecular spectroscopic analysis could provide a rapid, nondestructive and reliable method for identification of Chinese traditional medicine. It's found that the result of Raman spectroscopic analysis was the best one among these three methods. Comparing with traditional methods, which are laborious and time consuming, the molecular spectroscopic analysis is more effective.
Resumo:
The study of associations between two biomolecules is the key to understanding molecular function and recognition. Molecular function is often thought to be determined by underlying structures. Here, combining a single-molecule study of protein binding with an energy-landscape-inspired microscopic model, we found strong evidence that biomolecular recognition is determined by flexibilities in addition to structures. Our model is based on coarse-grained molecular dynamics on the residue level with the energy function biased toward the native binding structure ( the Go model). With our model, the underlying free-energy landscape of the binding can be explored. There are two distinct conformational states at the free-energy minimum, one with partial folding of CBD itself and significant interface binding of CBD to Cdc42, and the other with native folding of CBD itself and native interface binding of CBD to Cdc42. This shows that the binding process proceeds with a significant interface binding of CBD with Cdc42 first, without a complete folding of CBD itself, and that binding and folding are then coupled to reach the native binding state.