991 resultados para Receptor Subunit Isoforms
Resumo:
A particular feature of gammadelta T cell biology is that cells expressing T cell receptor (TCR) using specific Vgamma/Vdelta segments are localized in distinct epithelial sites, e.g., in mouse epidermis nearly all gammadelta T cells express Vgamma3/Vdelta1. These cells, referred to as dendritic epidermal T cells (DETC) originate from fetal Vgamma3+ thymocytes. The role of gammadelta TCR specificity in DETC's migration/localization to the skin has remained controversial. To address this issue we have generated transgenic (Tg) mice expressing a TCR delta chain (Vdelta6.3-Ddelta1-Ddelta2-Jdelta1-Cdelta), which can pair with Vgamma3 in fetal thymocytes but is not normally expressed by DETC. In wild-type (wt) Vdelta6.3Tg mice DETC were present and virtually all of them express Vdelta6.3. However, DETC were absent in TCR-delta(-/-) Vdelta6.3Tg mice, despite the fact that Vdelta6.3Tg gammadelta T cells were present in normal numbers in other lymphoid and nonlymphoid tissues. In wt Vdelta6.3Tg mice, a high proportion of in-frame Vdelta1 transcripts were found in DETC, suggesting that the expression of an endogenous TCR-delta (most probably Vdelta1) was required for the development of Vdelta6.3+ epidermal gammadelta T cells. Collectively our data demonstrate that TCR specificity is essential for the development of gammadelta T cells in the epidermis. Moreover, they show that the TCR-delta locus is not allelically excluded.
Resumo:
The Bacillus subtilis strain 168 chromosomal region extending from 109 degrees to 112 degrees has been sequenced. Among the 35 ORFs identified, cotT and rapA were the only genes that had been previously mapped and sequenced. Out of ten ORFs belonging to a single putative transcription unit, seven are probably involved in hexuronate catabolism. Their sequences are homologous to Escherichia coli genes exuT, uidB, uxaA, uxaB, uxaC, uxuA and uxuB, which are all required for the uptake of free D-glucuronate, D-galacturonate and beta-glucuronide, and their transformation into glyceraldehyde 3-phosphate and pyruvate via 2-keto-3-deoxygluconate. The remaining three ORFs encode two dehydrogenases and a transcriptional regulator. The operon is preceded by a putative catabolite-responsive element (CRE), located between a hypothetical promoter and the RBS of the first gene. This element, the longest and the only so far described that is fully symmetrical, consists of a 26 bp palindrome matching the theoretical B. subtilis CRE sequence. The remaining predicted amino acid sequences that share homologies with other proteins comprise: a cytochrome P-450, a glycosyltransferase, an ATP-binding cassette transporter, a protein similar to the formate dehydrogenase alpha-subunit (FdhA), protein similar to NADH dehydrogenases, and three homologues of polypeptides that have undefined functions.
Resumo:
The α(1b)-adrenergic receptor (AR) was, after rhodopsin, the first G protein-coupled receptor (GPCR) in which point mutations were shown to trigger constitutive (agonist-independent) activity. Constitutively activating mutations have been found in other AR subtypes as well as in several GPCRs. This chapter briefly summarizes the main findings on constitutively active mutants of the α(1a)- and α(1b)-AR subtypes and the methods used to predict activating mutations, to measure constitutive activity of Gq-coupled receptors and to investigate inverse agonism. In addition, it highlights the implications of studies on constitutively active AR mutants on elucidating the molecular mechanisms of receptor activation and drug action.
Resumo:
Mouse mammary tumor virus (MMTV) is a retrovirus which induces a strong immune response and a dramatic increase in the number of infected cells through the expression of a superantigen (SAg). Many cytokines are likely to be involved in the interaction between MMTV and the immune system. In particular, alpha/beta interferon (IFN-alpha/beta) and gamma interferon (IFN-gamma) exert many antiviral and immunomodulatory activities and play a critical role in other viral infections. In this study, we have investigated the importance of interferons during MMTV infection by using mice with a disrupted IFN-alpha/beta or IFN-gamma receptor gene. We found that the SAg response to MMTV was not modified in IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice. This was true both for the early expansion of B and T cells induced by the SAg and for the deletion of SAg-reactive cells at later stages of the infection. In addition, no increase in the amount of proviral DNA was detected in tissues of IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice, suggesting that interferons are not essential antiviral defense mechanisms during MMTV infection. In contrast, IFN-gammaR(0/0) mice had increased amounts of IL-4 mRNA and an altered usage of immunoglobulin isotypes with a reduced frequency of IgG2a- and IgG3-producing cells. This was associated with lower titers of virus-specific antibodies in serum early after infection, although efficient titers were reached later.
Resumo:
We explored the role of urokinase and tissue-type plasminogen activators (uPA and tPA), as well as the uPA receptor (uPAR; CD87) in mouse severe malaria (SM), using genetically deficient (-/-) mice. The mortality resulting from Plasmodium berghei ANKA infection was delayed in uPA(-/-) and uPAR(-/-) mice but was similar to that of the wild type (+/+) in tPA(-/-) mice. Parasitemia levels were similar in uPA(-/-), uPAR(-/-), and +/+ mice. Production of tumor necrosis factor, as judged from the plasma level and the mRNA levels in brain and lung, was markedly increased by infection in both +/+ and uPAR(-/-) mice. Breakdown of the blood-brain barrier, as evidenced by the leakage of Evans Blue, was similar in +/+ and uPAR(-/-) mice. SM was associated with a profound thrombocytopenia, which was attenuated in uPA(-/-) and uPAR(-/-) mice. Administration of aprotinin, a plasmin antagonist, also delayed mortality and attenuated thrombocytopenia. Platelet trapping in cerebral venules or alveolar capillaries was evident in +/+ mice but absent in uPAR(-/-) mice. In contrast, macrophage sequestration in cerebral venules or alveolar capillaries was evident in both +/+ and uPAR(-/-) mice. Polymorphonuclear leukocyte sequestration in alveolar capillaries was similar in +/+ and uPAR(-/-) mice. These results demonstrate that the uPAR deficiency attenuates the severity of SM, probably by its important role in platelet kinetics and trapping. These results therefore suggest that platelet sequestration contributes to the pathogenesis of SM.
Resumo:
Uns nivells correctes en sèrum de Ciclosporina A les primeres setmanes desprès d’ un trasplantament al•logènic amb acondicionament mieloablatiu, disminueixen l’aparició de malaltia de l’empelt contra el receptor aguda (MECRa). El seu impacte en el trasplantament d’intensitat reduïda (alo-TIR) encara no és conegut. En aquest treball retrospectiu s’analitzen les dades d’una cohort molt homogènia de pacients del nostre centre, estudiant-se les seves característiques clíniques i la relació entre els nivells de CsA i l’aparició de MECRa moderada o severa, en la fase precoç de l’alo-TIR.
Resumo:
The alpha chain of the interleukin-2 receptor (IL-2R alpha) is a key regulator of lymphocyte proliferation. To analyze the mechanisms controlling its expression in normal cells, we used the 5'-flanking region (base pairs -2539/+93) of the mouse gene to drive chloramphenicol acetyltransferase expression in four transgenic mouse lines. Constitutive transgene activity was restricted to lymphoid organs. In mature T lymphocytes, transgene and endogenous IL-2R alpha gene expression was stimulated by concanavalin A and up-regulated by IL-2 with very similar kinetics. In thymic T cell precursors, IL-1 and IL-2 cooperatively induced transgene and IL-2R alpha gene expression. These results show that regulation of the endogenous IL-2R alpha gene occurs mainly at the transcriptional level. They demonstrate that cis-acting elements in the 5'-flanking region present in the transgene confer correct tissue specificity and inducible expression in mature T cells and their precursors in response to antigen, IL-1, and IL-2. In a complementary approach, we screened the 5' end of the endogenous IL-2R alpha gene for DNase-I hypersensitive sites. We found three lymphocyte specific DNase-I hypersensitive sites. Two, at -0.05 and -5.3 kilobase pairs, are present in resting T cells. A third site appears at -1.35 kilobase pairs in activated T cells. It co-localizes with IL-2-responsive elements identified by transient transfection experiments.
Resumo:
Cytotoxicity and proliferation capacity are key functions of antiviral CD8 T cells. In the present study, we investigated a series of markers to define these functions in virus-specific CD8 T cells. We provide evidence that there is a lack of coexpression of perforin and CD127 in human CD8 T cells. CD127 expression on virus-specific CD8 T cells correlated positively with proliferation capacity and negatively with perforin expression and cytotoxicity. Influenza virus-, cytomegalovirus-, and Epstein-Barr virus/human immunodeficiency virus type 1-specific CD8 T cells were predominantly composed of CD127(+) perforin(-)/CD127(-) perforin(+), and CD127(-)/perforin(-) CD8 T cells, respectively. CD127(-)/perforin(-) and CD127(-)/perforin(+) cells expressed significantly more PD-1 and CD57, respectively. Consistently, intracellular cytokine (gamma interferon, tumor necrosis factor alpha, and interleukin-2 [IL-2]) responses combined to perforin detection confirmed that virus-specific CD8 T cells were mostly composed of either perforin(+)/IL-2(-) or perforin(-)/IL-2(+) cells. In addition, perforin expression and IL-2 secretion were negatively correlated in virus-specific CD8 T cells (P < 0.01). As previously shown for perforin, changes in antigen exposure modulated also CD127 expression. Based on the above results, proliferating (CD127(+)/IL-2-secreting) and cytotoxic (perforin(+)) CD8 T cells were contained within phenotypically distinct T-cell populations at different stages of activation or differentiation and showed different levels of exhaustion and senescence. Furthermore, the composition of proliferating and cytotoxic CD8 T cells for a given antiviral CD8 T-cell population appeared to be influenced by antigen exposure. These results advance our understanding of the relationship between cytotoxicity, proliferation capacity, the levels of senescence and exhaustion, and antigen exposure of antiviral memory CD8 T cells.
Resumo:
To study the interaction of T cell receptor with its ligand, a complex of a major histocompatibility complex molecule and a peptide, we derived H-2Kd-restricted cytolytic T lymphocyte clones from mice immunized with a Plasmodium berghei circumsporozoite peptide (PbCS) 252-260 (SYIPSAEKI) derivative containing photoreactive Nepsilon-[4-azidobenzoyl] lysine in place of Pro-255. This residue and Lys-259 were essential parts of the epitope recognized by these clones. Most of the clones expressed BV1S1A1 encoded beta chains along with specific complementary determining region (CDR) 3beta regions but diverse alpha chain sequences. Surprisingly, all T cell receptors were preferentially photoaffinity labeled on the alpha chain. For a representative T cell receptor, the photoaffinity labeled site was located in the Valpha C-strand. Computer modeling suggested the presence of a hydrophobic pocket, which is formed by parts of the Valpha/Jalpha C-, F-, and G-strands and adjacent CDR3alpha residues and structured to be able to avidly bind the photoreactive ligand side chain. We previously found that a T cell receptor specific for a PbCS peptide derivative containing this photoreactive side chain in position 259 similarly used a hydrophobic pocket located between the junctional CDR3 loops. We propose that this nonpolar domain in these locations allow T cell receptors to avidly and specifically bind epitopes containing non-peptidic side chains.
Resumo:
Odorous chemicals are detected by the mouse main olfactory epithelium (MOE) by about 1100 types of olfactory receptors (OR) expressed by olfactory sensory neurons (OSNs). Each mature OSN is thought to express only one allele of a single OR gene. Major impediments to understand the transcriptional control of OR gene expression are the lack of a proper characterization of OR transcription start sites (TSSs) and promoters, and of regulatory transcripts at OR loci. We have applied the nanoCAGE technology to profile the transcriptome and the active promoters in the MOE. nanoCAGE analysis revealed the map and architecture of promoters for 87.5% of the mouse OR genes, as well as the expression of many novel noncoding RNAs including antisense transcripts. We identified candidate transcription factors for OR gene expression and among them confirmed by chromatin immunoprecipitation the binding of TBP, EBF1 (OLF1), and MEF2A to OR promoters. Finally, we showed that a short genomic fragment flanking the major TSS of the OR gene Olfr160 (M72) can drive OSN-specific expression in transgenic mice.
Resumo:
O-Hexanoyl-3,5-diiodo-N-(4-azido-2-nitro-phenyl)tyramine has been used after photochemical conversion into the reactive nitrene to label (Na+,K+)-ATPase from Bufo marinus toad kidney. Immunochemical evidence indicates that the reagent labels both subunits of the enzyme in partially purified form as well as in microsomal membranes. These results support the view that the glycoprotein subunit, like the catalytic subunit, possesses hydrophobic domains by which it is integrated into the plasma membrane.
Resumo:
Intraocular inflammation has been recognized as a major factor leading to blindness. Because tumor necrosis factor-alpha (TNF-alpha) enhances intraocular cytotoxic events, systemic anti-TNF therapies have been introduced in the treatment of severe intraocular inflammation, but frequent re-injections are needed and are associated with severe side effects. We have devised a local intraocular nonviral gene therapy to deliver effective and sustained anti-TNF therapy in inflamed eyes. In this study, we show that transfection of the ciliary muscle by plasmids encoding for three different variants of the p55 TNF-alpha soluble receptor, using electrotransfer, resulted in sustained intraocular secretion of the encoded proteins, without any detection in the serum. In the eye, even the shorter monomeric variant resulted in efficient neutralization of TNF-alpha in a rat experimental model of endotoxin-induced uveitis, as long as 3 months after transfection. A subsequent downregulation of interleukin (IL)-6 and iNOS and upregulation of IL-10 expression was observed together with a decreased rolling of inflammatory cells in anterior segment vessels and reduced infiltration within the ocular tissues. Our results indicate that using a nonviral gene therapy strategy, the local self-production of monomeric TNF-alpha soluble receptors induces a local immunomodulation enabling the control of intraocular inflammation.
Resumo:
Whole genome sequences of microbial pathogens present new opportunities for clinical application. Presently, genome sequencing of the human protozoan parasite Leishmania major is in progress. The driving forces behind the genome project are to identify genes with key cellular functions and new drug targets, to increase knowledge on mechanisms of drug resistance and to favor technology transfer to scientists from endemic countries. Sequencing of the genome is also aimed at the identification of genes that are expressed in the infectious stages of the parasite and in particular in the intracellular form of the parasite. Several protective antigens of Leishmania have been identified. In addition to these antigens, lysosomal cysteine proteinases (CPs) have been characterized in different strains of Leishmania and Trypanosoma, as new target molecules. Recently, we have isolated and characterized Type I (CPB) and Type II (CPA) cysteine proteinase encoding genes from L. major. The exact function of cysteine proteinases of Leishmania is not completely understood, although there are a few reports describing their role as virulence factors. One specific feature of CPB in Leishmania and other trypanosomatids, is the presence of a Cterminal extension (CTE) which is possibly indicative of conserved structure and function. Recently, we demonstrated that DNA immunization of genetically susceptible BALB / c mice, using a cocktail of CPB and CPA genes, induced long lasting protection against L. major infection. This review intends to give an overview of the current knowledge on genetic vaccination used against leishmaniasis and the importance of CP genes for such an approach.
Resumo:
Recent evidence suggests the existence of a hepatoportal vein glucose sensor, whose activation leads to enhanced glucose use in skeletal muscle, heart, and brown adipose tissue. The mechanism leading to this increase in whole body glucose clearance is not known, but previous data suggest that it is insulin independent. Here, we sought to further determine the portal sensor signaling pathway by selectively evaluating its dependence on muscle GLUT4, insulin receptor, and the evolutionarily conserved sensor of metabolic stress, AMP-activated protein kinase (AMPK). We demonstrate that the increase in muscle glucose use was suppressed in mice lacking the expression of GLUT4 in the organ muscle. In contrast, glucose use was stimulated normally in mice with muscle-specific inactivation of the insulin receptor gene, confirming independence from insulin-signaling pathways. Most importantly, the muscle glucose use in response to activation of the hepatoportal vein glucose sensor was completely dependent on the activity of AMPK, because enhanced hexose disposal was prevented by expression of a dominant negative AMPK in muscle. These data demonstrate that the portal sensor induces glucose use and development of hypoglycemia independently of insulin action, but by a mechanism that requires activation of the AMPK and the presence of GLUT4.