921 resultados para RADIATIVE ELECTRON-CAPTURE
Resumo:
In the present work we construct coherent states in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kinds of coherent states, those which correspond to classical trajectories which embrace the solenoid and those which do not. The constructed coherent states reproduce exactly classical trajectories, maintain their form under the time evolution and form a complete set of functions, which can be useful in semiclassical calculations. In the absence of the solenoid field these states are reduced to the well known in the case of uniform magnetic field Malkin-Man`ko coherent states.
Resumo:
Samples of natural andalusite (Al(2)SiO(5)) crystal have been investigated in terms of thermoluminescence (TL) and electron paramagnetic resonance (EPR) measurements. The TL glow curves of samples previously annealed at 600 degrees C for 30 min and subsequently gamma-irradiated gave rise to four glow peaks at 150, 210, 280 and 350 degrees C. The EPR spectra of natural samples heat-treated at 600 degrees C for 30 min show signals at g = 5.94 and 2.014 that do not change after gamma irradiation and thermal treatments. However, it was observed that the appearance of a paramagnetic center at g=1.882 for the samples annealed at 600 degrees C for 30 min followed gamma irradiation. This line was attributed to Ti(3+) centers. The EPR signals observed at g=5.94 and 2.014 are due to Fe(3+). Correlations between EPR and TL results of these crystals show that the EPR line at g=1.882 and the TL peak at 280 degrees C can be attributed to the same defect center. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Direct measurements in the last decades have highlighted a new problem related to the lowering of the Coulomb barrier between the interacting nuclei due to the presence of the ""electron screening"" in the laboratory measurements. It was systematically observed that the presence of the electronic cloud around the interacting ions in measurements of nuclear reactions cross sections at astrophysical energies gives rise to an enhancement of the astrophysical S(E)-factor as lower and lower energies are explored [1]. Moreover, at present Such an effect is not well understood as the value of the potential for screening extracted from these measurements is higher than the tipper limit of theoretical predictions (adiabatic limit). On the other hand, the electron screening potential in laboratory measurement is different from that occurring in stellar plasmas thus the quantity of interest in astrophysics is the so-called ""bare nucleus cross section"". This quantity can only be extrapolated in direct measurements. These are the reasons that led to a considerable growth on interest in indirect measurement techniques and in particular the Trojan Horse Method (THM) [2,3]. Results concerning the bare nucleus cross sections measurements will be shown in several cases of astrophysical interest. In those cases the screening potential evaluated by means of the THM will be compared with the adiabatic limit and results arising from extrapolation in direct measurements.
Resumo:
Samples of natural sodalite, Na(8)Al(6)Si(6)O(24)Cl(2), submitted to gamma irradiation and to thermal treatments, have been investigated using the thermoluminescence (TL) and electron paramagnetic resonance (EPR) techniques. Both, natural and heat-treated samples at 500A degrees C in air for 30 min, present an EPR signal around g = 2.01132 attributed to oxygen hole centers. The EPR spectra of irradiated samples show an intense line at g = 2.0008 superimposed by a hyperfine multiplet of 11 lines due to an O(-) ion in an intermediate position with respect to two adjacent Al nuclei. In the TL measurements, the samples were annealed at 500A degrees C for 30 min and then irradiated with gamma doses varying from 0.001 to 20 kGy. All the samples have shown TL peaks at 110, 230, 270, 365, and 445A degrees C. A correlation between the EPR g = 2.01132 line and the 365A degrees C TL peak was observed. A TL model is proposed in which a Na(+) ion acts as a charge compensator when an Al(3+) ion replaces a Si(4+) lattice ion. The gamma ray destruction of the Al-Na complex provides an electron trapped at the Na and a hole trapped at a non-bridging oxygen ion adjacent to the Al(3+) ion.
Resumo:
Silicate mineral hemimorphite has been investigated concerning its TL, IR and EPR properties. A broad TL peak around 180 degrees C and a weaker and narrower peak around 360 degrees C were found in a sample annealed at 600 degrees C for I h and then irradiated. The deconvolution using the CGCD method revealed peaks around 132, 169, 222 and 367 degrees C. The reflectivity measurements showed several bands in the NIR region due to H(2)O, OH and Al-OH complexes. No band was observed in the visible region. The thermal treatments were carried out from similar to 110 to 940 degrees C and dehydration was observed, first causing a diminishing optical absorption in general and the disappearance of water and hydroxyl absorption bands. The EPR spectrum of natural hemimorphite, presented Cu(2+) signals at g = 2.4 and g = 2.1 plus E(1)` signal superposed to Fe(3+) signal around g = 2.0. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Thermoluminescence, electron paramagnetic resonance and optical absorption properties of rhodonite, a natural silicate mineral, have been investigated and compared to those of synthetic crystal, pure and doped. The TL peaks grow linearly for radiation dose up to 4 kGy, and then saturate. In all the synthetic samples, 140 and 340 degrees C TL peaks are observed; the difference occurs in their relative intensities, but only 340 degrees C peak grows strongly for high doses. Al(2)O(3) and Al(2)O(3) + CaO-doped synthetic samples presented several decades intenser TL compared to that of synthetic samples doped with other impurities. A heating rate of 4 degrees C/s has been used in all the TL readings. The EPR spectrum of natural rhodonite mineral has only one huge signal around g = 2.0 with width extending from 1,000 to 6,000 G. This is due to Mn dipolar interaction, a fact proved by numerical calculation based on Van Vleck dipolar broadening expression. The optical absorption spectrum is rich in absorption bands in near-UV, visible and near-IR intervals. Several bands in the region from 540 to 340 nm are interpreted as being due to Mn(3+) in distorted octahedral environment. A broad and intense band around 1,040 nm is due to Fe(2+). It decays under heating up to 900 degrees C. At this temperature it is reduced by 80% of its original intensity. The pink, natural rhodonite, heated in air starts becoming black at approximately 600 degrees C.
Resumo:
Electron transport parameters are important in several areas ranging from particle detectors to plasma-assisted processing reactors. Nevertheless, especially at high fields strengths and for complex gases, relatively few data are published. A dedicated setup has been developed to measure the electron drift velocity and the first Townsend coefficient in parallel plate geometry. An RPC-like cell has been adopted to reach high field strengths without the risk of destructive sparks. The validation data obtained with pure Nitrogen will be presented and compared to a selection of the available literature and to calculations performed with Magboltz 2 version 8.6. The new data collected in pure Isobutane will then be discussed. This is the first time the electron drift velocity in pure Isobutane is measured well into the saturation region. Good agreement is found with expectations from Magboltz. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We expect to observe parton saturation in a future electron-ion collider. In this Letter we discuss this expectation in more detail considering two different models which are in good agreement with the existing experimental data on nuclear structure functions. In particular, we study the predictions of saturation effects in electron-ion collisions at high energies, using a generalization for nuclear targets of the b-CGC model, which describes the ep HERA quite well. We estimate the total. longitudinal and charm structure functions in the dipole picture and compare them with the predictions obtained using collinear factorization and modern sets of nuclear parton distributions. Our results show that inclusive observables are not very useful in the search for saturation effects. In the small x region they are very difficult to disentangle from the predictions of the collinear approaches. This happens mainly because of the large uncertainties in the determination of the nuclear parton distribution functions. On the other hand, our results indicate that the contribution of diffractive processes to the total cross section is about 20% at large A and small Q(2), allowing for a detailed study of diffractive observables. The study of diffractive processes becomes essential to observe parton Saturation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.
Resumo:
Magneto-capacitance was studied in narrow miniband GaAs/AlGaAs superlattices where quasi-two dimensional electrons revealed the integer quantum Hall effect. The interwell tunneling was shown to reduce the effect of the quantization of the density of states on the capacitance of the superlattices. In such case the minimum of the capacitance observed at the filling factor nu = 2 was attributed to the decrease of the electron compressibility due to the formation of the incompressible quantized Hall phase. In accord with the theory this phase was found strongly inhomogeneous. The incompressible fraction of the quantized Hall phase was demonstrated to rapidly disappear with the increasing temperature. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The interaction between angiotensin II (AII, DRVYIHPF) and its analogs carrying 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) and detergents-negatively charged sodium dodecyl sulfate (SDS) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS)-was examined by means of EPR, CD, and fluorescence. EPR spectra of partially active TOAC(1)-AII and inactive TOAC(3)-AII in aqueous solution indicated fast tumbling, the freedom of motion being greater at the N-terminus. Line broadening occurred upon interaction with micelles. Below SDS critical micelle concentration, broader lines indicated complex formation with tighter molecular packing than in micelles. Small changes in hyperfine splittings evinced TOAC location at the micelle-water interface. The interaction with anionic micelles was more effective than with zwitterionic micelles. Peptide-micelle interaction caused fluorescence increase. The TOAC-promoted intramolecular fluorescence quenching was more, pronounced for TOAC(3)-AII because of the proximity between the nitroxide and Tyr(4). CD spectra showed that although both AII and TOAC(1)-AII presented flexible conformations in water, TOAC(3)-AII displayed conformational restriction because of the TOAC-imposed bend (Schreier et al., Biopolymers 2004, 74, 389). In HPS, conformational changes were observed for the labeled peptides at neutral and basic pH. In SDS, all peptides underwent pH-dependent conformational changes. Although the spectra suggested similar folds for All and TOAC(1)-AII, different conformations were acquired by TOAC(3)-AII. The membrane environment has been hypothesized to shift conformational equilibria so as to stabilize the receptor-bound conformation of ligands. The fact that TOAC(3)-AII is unable to acquire conformations similar to those of native AII and partially active TOAC(1)-AII is probably the explanation for its lack of biological activity. (C) 2009 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 525-537, 2009.
Resumo:
The activation parameters for the thermal decomposition of 13 acridinium-substituted 1,2-dioxetanes, bearing an aromatic moiety, were determined and their chemiluminescence emission quantum yields estimated, utilizing in situ photosensitized 1,2-dioxetane generation and observation of its thermal decomposition kinetics, without isolation of these highly unstable cyclic peroxides. Decomposition rate constants show linear free-energy correlation for electron-withdrawing substituents, with a Hammett reaction constant of rho = 1.3 +/- 0.1, indicating the occurrence of an intramolecular electron transfer from the acridinium moiety to the 1,2-dioxetane ring, as postulated by the intramolecular chemically initiated electron exchange luminescence (CIEEL) mechanism. Emission quantum yield behavior can also be rationalized on the basis of the intramolecular CIEEL mechanism, additionally evidencing its occurrence in this transformation. Both relations constitute the first experimental evidence for the occurrence of the postulated intramolecular electron transfer in the catalyzed and induced decomposition of properly substituted 1,2-dioxetanes.
Resumo:
High-level CASSCF/MRCI calculations with a quintuple-zeta quality basis set are reported by characterizing for the first time a manifold of electronic states of the CAs radical yet to be investigated experimentally. Along with the potential energy curves and the associated spectroscopic constants, the dipole moment functions for selected electronic states as well as the transition dipole moment functions for the most relevant electronic transitions are also presented. Estimates of radiative transition probabilities and lifetimes complement this investigation, which also assesses the effect of spin-orbit interaction on the A (2)Pi state. Whenever pertinent, comparisons of similarities and differences with the isovalent CN and CP radicals are made.
Resumo:
The minimum energy path along the lowest-lying pi pi* excited state of 2-aminopurine was calculated to elucidate the mechanisms of radiationless decay and emission in water. The sequential Monte Carlo quantum mechanics approach with a multiconfigurational and perturbative description of the wave function was employed to compute the minimum, transition state, and conical intersection. It was found that the barrier in the potential energy surface to access the conical intersection funnel increases in aqueous environment, making the system prone to enlarge the emission yield. These results rationalize the observed enhancement of emission in 2-aminopurine upon increasing of the solvent polarity. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
n-Butanethiol is generated in situ by sequential addition of n-butyllithium and water to elemental sulfur. The n-butanethiol formed was reacted with electron-deficient olefines to give Michael-type addition products in good yields. The method avoids the manipulation of the bad-smelling n-butanethiol.