948 resultados para RADIATION-DOSE DISTRIBUTIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-value fruit crops are exposed to a range of environmental conditions that can reduce fruit quality. Solar injury (SI) or sunburn is a common disorder in tropical, sub-tropical, and temperate climates and is related to: 1) high fruit surface temperature; 2) high visible light intensity; and, 3) ultraviolet radiation (UV). Positional changes in fruit that are caused by increased weight or abrupt changes that result from summer pruning, limb breakage, or other damage to the canopy can expose fruit to high solar radiation levels, increased fruit surface temperatures, and increased UV exposure that are higher than the conditions to which they are adapted. In our studies, we examined the effects of high fruit surface temperature, saturating photosynthetically-active radiation (PAR), and short-term UV exposure on chlorophyll fluorescence, respiration, and photosynthesis of fruit peel tissues from tropical and temperate fruit in a simulation of these acute environmental changes. All tropical fruits (citrus, macadamia, avocado, pineapple, and custard apple) and the apple cultivars 'Gala', 'Gold Rush', and 'Granny Smith' increased dark respiration (A0) when exposed to UV, suggesting that UV repair mechanisms were induced. The maximum quantum efficiency of photosystem II (Fv/Fm) and the quantum efficiency of photosystem II (ΦII) were unaffected, indicating no adverse effects on photosystem II (PSII). In contrast, 'Braeburn' apple had a reduced Fv/Fm with no increase in A0 on all sampling dates. There was a consistent pattern in all studies. When Fv/Fm was unaffected by UV treatment, A0 increased significantly. Conversely, when Fv/Fm was reduced by UV treatment, then A0 was unaffected. The pattern suggests that when UV repair mechanisms are effective, PSII is adequately protected, and that this protection occurs at the cost of higher respiration. However, when the UV repair mechanisms are ineffective, not only is PSII damaged, but there is additional short-term damage to the repair mechanisms, indicated by a lack of respiration to provide energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: It is common for head and neck patients to be affected by time trend errors as a result of weight loss during a course of radiation treatment. The objective of this planning study was to investigate the impact of weight loss on Volumetric Modulated Arc Therapy (VMAT) as well as Intensity modulated radiation therapy (IMRT) for locally advanced head and neck cancer using automatic co-registration of the CBCT. Methods and Materials: A retrospective analysis of previously treated IMRT plans for 10 patients with locally advanced head and neck cancer patients was done. A VMAT plan was also produced for all patients. We calculated the dose–volume histograms (DVH) indices for spinal cord planning at risk volumes (PRVs), the brainstem PRVs (SC+0.5cm and BS+0.5cm, respectively) as well as mean dose to the parotid glands. Results: The results show that the mean difference in dose to the SC+0.5cm was 1.03% and 1.27% for the IMRT and VMAT plans, respectively. As for dose to the BS+0.5, the percentage difference was 0.63% for the IMRT plans and 0.61% for the VMAT plans. The analysis of the parotid gland doses shows that the percentage change in mean dose to left parotid was -8.0% whereas that of the right parotid was -6.4% for the IMRT treatment plans. In the VMAT plans, the percentages change for the left and the right parotid glands were -6.6% and -6.7% respectively. Conclusions: This study shows a clinically significant impact of weight loss on DVH indices analysed in head and neck organs at risk. It highlights the importance of adaptive radiotherapy in head and neck patients if organ at risk sparing is to be maintained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In spite of the extensive use of phosphine fumigation around the world to control insects in stored grain, and the knowledge that grain sorbs phosphine, the effect of concentration on sorption has not been quantified. A laboratory study was undertaken, therefore, to investigate the effect of phosphine dose on sorption in wheat. Wheat was added to glass flasks to achieve filling ratios of 0.25-0.95, and the flasks were sealed and injected with phosphine at 0.1-1.5 mg L-1 based on flask volume. Phosphine concentration was monitored for 8 days at 25°C and 55% RH. RESULTS: When sorption occurred, phosphine concentration declined with time and was approximately first order, i.e. the data fitted an exponential decay equation. Percentage sorption per day was directly proportional to filling ratio, and was negatively correlated with dose for any given filling ratio. Based on the results, a tenfold increase in dose would result in a halving of the sorption constant and the percentage daily loss. Wheat was less sorptive if it was fumigated for a second time. CONCLUSIONS: The results have implications for the use of phosphine for control of insects in stored wheat. This study shows that dose is a factor that must be considered when trying to understand the impact of sorption on phosphine concentration, and that there appears to be a limit to the capacity of wheat to sorb phosphine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose This study evaluated the impact of patient set-up errors on the probability of pulmonary and cardiac complications in the irradiation of left-sided breast cancer. Methods and Materials Using the CMS XiO Version 4.6 (CMS Inc., St Louis, MO) radiotherapy planning system's NTCP algorithm and the Lyman -Kutcher-Burman (LKB) model, we calculated the DVH indices for the ipsilateral lung and heart and the resultant normal tissue complication probabilities (NTCP) for radiation-induced pneumonitis and excess cardiac mortality in 12 left-sided breast cancer patients. Results Isocenter shifts in the posterior direction had the greatest effect on the lung V20, heart V25, mean and maximum doses to the lung and the heart. Dose volume histograms (DVH) results show that the ipsilateral lung V20 tolerance was exceeded in 58% of the patients after 1cm posterior shifts. Similarly, the heart V25 tolerance was exceeded after 1cm antero-posterior and left-right isocentric shifts in 70% of the patients. The baseline NTCPs for radiation-induced pneumonitis ranged from 0.73% - 3.4% with a mean value of 1.7%. The maximum reported NTCP for radiation-induced pneumonitis was 5.8% (mean 2.6%) after 1cm posterior isocentric shift. The NTCP for excess cardiac mortality were 0 % in 100% of the patients (n=12) before and after setup error simulations. Conclusions Set-up errors in left sided breast cancer patients have a statistically significant impact on the Lung NTCPs and DVH indices. However, with a central lung distance of 3cm or less (CLD <3cm), and a maximum heart distance of 1.5cm or less (MHD<1.5cm), the treatment plans could tolerate set-up errors of up to 1cm without any change in the NTCP to the heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Peer-review programmes in radiation oncology are used to facilitate the process and evaluation of clinical decision-making. However, web-based peer-review methods are still uncommon. This study analysed an inter-centre, web-based peer-review case conference as a method of facilitating the decision-making process in radiation oncology. Methodology A benchmark form was designed based on the American Society for Radiation Oncology targets for radiation oncology peer review. This was used for evaluating the contents of the peer-review case presentations on 40 cases, selected from three participating radiation oncology centres. A scoring system was used for comparison of data, and a survey was conducted to analyse the experiences of radiation oncology professionals who attended the web-based peer-review meetings in order to identify priorities for improvement. Results The mean scores for the evaluations were 82·7, 84·5, 86·3 and 87·3% for cervical, prostate, breast and head and neck presentations, respectively. The survey showed that radiation oncology professionals were confident about the role of web-based peer-reviews in facilitating sharing of good practice, stimulating professionalism and promoting professional growth. The participants were satisfied with the quality of the audio and visual aspects of the web-based meeting. Conclusion The results of this study suggest that simple inter-centre web-based peer-review case conferences are a feasible technique for peer review in radiation oncology. Limitations such as data security and confidentiality can be overcome by the use of appropriate structure and technology. To drive the issues of quality and safety a step further, small radiotherapy departments may need to consider web-based peer-review case conference as part of their routine quality assurance practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize (Zea mays L.) is a chill-susceptible crop cultivated in northern latitude environments. The detrimental effects of cold on growth and photosynthetic activity have long been established. However, a general overview of how important these processes are with respect to the reduction of productivity reported in the field is still lacking. In this study, a model-assisted approach was used to dissect variations in productivity under suboptimal temperatures and quantify the relative contributions of light interception (PARc) and radiation use efficiency (RUE) from emergence to flowering. A combination of architectural and light transfer models was used to calculate light interception in three field experiments with two cold-tolerant lines and at two sowing dates. Model assessment confirmed that the approach was suitable to infer light interception. Biomass production was strongly affected by early sowings. RUE was identified as the main cause of biomass reduction during cold events. Furthermore, PARc explained most of the variability observed at flowering, its relative contributions being more or less important according to the climate experienced. Cold temperatures resulted in lower PARc, mainly because final leaf length and width were significantly reduced for all leaves emerging after the first cold occurrence. These results confirm that virtual plants can be useful as fine phenotyping tools. A scheme of action of cold on leaf expansion, light interception and radiation use efficiency is discussed with a view towards helping breeders define relevant selection criteria. This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long term datasets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-Means clustering analysis, we categorized the collected aerosol size distributions in three main categories: “Traffic” (prevailing 44-63% of the time), “Nucleation” (14-19%) and “Background pollution and Specific cases” (7-22%). Measurements from Rome (Italy) and Los Angeles (California) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles burst lasted 1-4 hours, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. On average, nucleation events lasting for 2 hours or more occurred on 55% of the days, this extending to >4hrs in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In summary, although traffic remains the main source of UFP in urban areas, in developed countries with high insolation urban nucleation events are also a main source of UFP. If traffic-related particle concentrations are reduced in the future, nucleation events will likely increase in urban areas, due to the reduced urban condensation sinks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the wheatbelt of eastern Australia, rainfall shifts from winter dominated in the south (South Australia, Victoria) to summer dominated in the north (northern New South Wales, southern Queensland). The seasonality of rainfall, together with frost risk, drives the choice of cultivar and sowing date, resulting in a flowering time between October in the south and August in the north. In eastern Australia, crops are therefore exposed to contrasting climatic conditions during the critical period around flowering, which may affect yield potential, and the efficiency in the use of water (WUE) and radiation (RUE). In this work we analysed empirical and simulated data, to identify key climatic drivers of potential water- and radiation-use efficiency, derive a simple climatic index of environmental potentiality, and provide an example of how a simple climatic index could be used to quantify the spatial and temporal variability in resource-use efficiency and potential yield in eastern Australia. Around anthesis, from Horsham to Emerald, median vapour pressure deficit (VPD) increased from 0.92 to 1.28 kPa, average temperature increased from 12.9 to 15.2°C, and the fraction of diffuse radiation (FDR) decreased from 0.61 to 0.41. These spatial gradients in climatic drivers accounted for significant gradients in modelled efficiencies: median transpiration WUE (WUEB/T) increased southwards at a rate of 2.6% per degree latitude and median RUE increased southwards at a rate of 1.1% per degree latitude. Modelled and empirical data confirmed previously established relationships between WUEB/T and VPD, and between RUE and photosynthetically active radiation (PAR) and FDR. Our analysis also revealed a non-causal inverse relationship between VPD and radiation-use efficiency, and a previously unnoticed causal positive relationship between FDR and water-use efficiency. Grain yield (range 1-7 t/ha) measured in field experiments across South Australia, New South Wales, and Queensland (n = 55) was unrelated to the photothermal quotient (Pq = PAR/T) around anthesis, but was significantly associated (r2 = 0.41, P < 0.0001) with newly developed climatic index: a normalised photothermal quotient (NPq = Pq . FDR/VPD). This highlights the importance of diffuse radiation and vapour pressure deficit as sources of variation in yield in eastern Australia. Specific experiments designed to uncouple VPD and FDR and more mechanistic crop models might be required to further disentangle the relationships between efficiencies and climate drivers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Species distribution modelling (SDM) typically analyses species’ presence together with some form of absence information. Ideally absences comprise observations or are inferred from comprehensive sampling. When such information is not available, then pseudo-absences are often generated from the background locations within the study region of interest containing the presences, or else absence is implied through the comparison of presences to the whole study region, e.g. as is the case in Maximum Entropy (MaxEnt) or Poisson point process modelling. However, the choice of which absence information to include can be both challenging and highly influential on SDM predictions (e.g. Oksanen and Minchin, 2002). In practice, the use of pseudo- or implied absences often leads to an imbalance where absences far outnumber presences. This leaves analysis highly susceptible to ‘naughty-noughts’: absences that occur beyond the envelope of the species, which can exert strong influence on the model and its predictions (Austin and Meyers, 1996). Also known as ‘excess zeros’, naughty noughts can be estimated via an overall proportion in simple hurdle or mixture models (Martin et al., 2005). However, absences, especially those that occur beyond the species envelope, can often be more diverse than presences. Here we consider an extension to excess zero models. The two-staged approach first exploits the compartmentalisation provided by classification trees (CTs) (as in O’Leary, 2008) to identify multiple sources of naughty noughts and simultaneously delineate several species envelopes. Then SDMs can be fit separately within each envelope, and for this stage, we examine both CTs (as in Falk et al., 2014) and the popular MaxEnt (Elith et al., 2006). We introduce a wider range of model performance measures to improve treatment of naughty noughts in SDM. We retain an overall measure of model performance, the area under the curve (AUC) of the Receiver-Operating Curve (ROC), but focus on its constituent measures of false negative rate (FNR) and false positive rate (FPR), and how these relate to the threshold in the predicted probability of presence that delimits predicted presence from absence. We also propose error rates more relevant to users of predictions: false omission rate (FOR), the chance that a predicted absence corresponds to (and hence wastes) an observed presence, and the false discovery rate (FDR), reflecting those predicted (or potential) presences that correspond to absence. A high FDR may be desirable since it could help target future search efforts, whereas zero or low FOR is desirable since it indicates none of the (often valuable) presences have been ignored in the SDM. For illustration, we chose Bradypus variegatus, a species that has previously been published as an exemplar species for MaxEnt, proposed by Phillips et al. (2006). We used CTs to increasingly refine the species envelope, starting with the whole study region (E0), eliminating more and more potential naughty noughts (E1–E3). When combined with an SDM fit within the species envelope, the best CT SDM had similar AUC and FPR to the best MaxEnt SDM, but otherwise performed better. The FNR and FOR were greatly reduced, suggesting that CTs handle absences better. Interestingly, MaxEnt predictions showed low discriminatory performance, with the most common predicted probability of presence being in the same range (0.00-0.20) for both true absences and presences. In summary, this example shows that SDMs can be improved by introducing an initial hurdle to identify naughty noughts and partition the envelope before applying SDMs. This improvement was barely detectable via AUC and FPR yet visible in FOR, FNR, and the comparison of predicted probability of presence distribution for pres/absence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible occurrence of a generalized (1-wave) nonequilibrium superconducting state in a multiband system under certain conditions is studied. In the model the radiation field causes interband mixing, and phonons of an appropriate mode (branch) are involved in the interband scattering of electrons of two conduction bands of the system. The strength of the generalized 1-wave pairing interaction between quasiparticles belonging to new radiation admixed states depends on the density (n o/V) of quanta in the system. The coupling constant has the form Xl= AiB(n o/V)/[C + B(no/V)], where A1, B, and C are parameters. For C > B(n0/V), the transition temperature T1* increases with (no/V) in the initial stages. It levels off with higher power. With further increase of power, the transition temperature is expected to drop sharply due to heating effects which cause pair breaking. Estimates show that p-wave (triplet state) pairing may be possible under radiation-induced nonequilibrium situations in appropriate systems. Estimates for lifetimes of various processes quasiparticle, phonon, pair relaxation, and photon-induced mixing) show that the coherence required for the mixing and pairing effects will be maintained for the temperature range and photon density considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emotional intelligence (EI) is defined as “the ability to recognise, understand and manage emotions in ourselves and others” [1]. Initially identified as a concept applied to leadership and management, EI is now recognised as an important skill in a number of areas, including healthcare [2]. Empathy (the ability to see the world through someone else’s eyes) is known to play an important role in the therapeutic relationship with patients [3]. As EI has been shown to improve empathy [4], it is clear that developing the EI of student health professionals should benefit patients in the long term. It is not surprising, then, that a number of studies have investigated the role of EI in medical, dental and nursing students, however there is little reported evidence relating to EI development in pre-registration radiation therapy (RT) students.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Emotional intelligence (EI) is an increasingly important aspect of a health professional’s skill set. It is strongly associated with empathy, reflection and resilience; all key aspects of radiotherapy practice. Previous work in other disciplines has formed contradictory conclusions concerning development of EI over time. This study aimed to determine the extent to which EI can develop during a radiotherapy undergraduate course and identify factors affecting this. Methods and materials: This study used anonymous coded Likert-style surveys to gather longitudinal data from radiotherapy students relating to a range of self-perceived EI traits during their 3-year degree. Data were gathered at various points throughout the course from the whole cohort. Results: A total of 26 students provided data with 14 completing the full series of datasets. There was a 17·2% increase in self-reported EI score with a p-value<0·0001. Social awareness and relationship skills exhibited the greatest increase in scores compared with self-awareness. Variance of scores decreased over time; there was a reduced change in EI for mature students who tended to have higher initial scores. EI increase was most evident immediately after clinical placements. Conclusions: Radiotherapy students increase their EI scores during a 3-year course. Students reported higher levels of EI immediately after their clinical placement; radiotherapy curricula should seek to maximise on these learning opportunities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The objective of this study was to describe prospectively quality of life (QOL) before and after radiotherapy for patients with prostate carcinoma. METHODS: Forty-three patients with T1-T3 prostate carcinoma who underwent conformal external beam radiation therapy were randomized either to the complete European Organization for Research and Treatment of Cancer (EORTC) QOL questionnaire (EORTC QLQ-C30) or the Medical Outcomes Study Group Short Form Health Survey (SF-36) at baseline, at 3 weeks and 6 weeks after initial treatment, and at 6 weeks and 5 months after the completion of radiotherapy. The measures were self-reported patient QOL, and values are given as the mean +/- standard error of the mean. Changes in QOL are described from baseline to the end of treatment in both questionnaire groups. RESULTS: Emotional role functioning, as measured with the SF-36 questionnaire, significantly improved from 68.2 +/- 9.9 at baseline to 93.3 +/- 5.2 at the end of therapy (P = 0.02). The EORTC QLQ-C30 questionnaire revealed consistent values of emotional functioning during treatment (72.7 +/- 5.9 at baseline) but showed a significant improvement 6 weeks after therapy (89.0 +/- 4.4; P = 0.01). Role functioning deteriorated from 80.1 +/- 6.5 at baseline to 62.5 +/- 8.8 at the end of radiotherapy (P = 0.02). Symptoms of fatigue were shown to increase significantly from 26.9 +/- 6.0 at baseline to 37.7 +/- 7.6 at the end of therapy (P = 0.02). No significant changes in the other dimensions were observed in either questionnaire. CONCLUSIONS: After radiotherapy for prostate carcinoma, patients experience a temporary deterioration of fatigue and role functioning, as measured with the EORTC QLQ-C-30. Despite physical deterioration, the authors observed an improvement in emotional functioning scores with both questionnaires. This may have been due to psychological adaptation and coping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compared daily net radiation (Rn) estimates from 19 methods with the ASCE-EWRI Rn estimates in two climates: Clay Center, Nebraska (sub-humid) and Davis, California (semi-arid) for the calendar year. The performances of all 20 methods, including the ASCE-EWRI Rn method, were then evaluated against Rn data measured over a non-stressed maize canopy during two growing seasons in 2005 and 2006 at Clay Center. Methods differ in terms of inputs, structure, and equation intricacy. Most methods differ in estimating the cloudiness factor, emissivity (e), and calculating net longwave radiation (Rnl). All methods use albedo (a) of 0.23 for a reference grass/alfalfa surface. When comparing the performance of all 20 Rn methods with measured Rn, we hypothesized that the a values for grass/alfalfa and non-stressed maize canopy were similar enough to only cause minor differences in Rn and grass- and alfalfa-reference evapotranspiration (ETo and ETr) estimates. The measured seasonal average a for the maize canopy was 0.19 in both years. Using a = 0.19 instead of a = 0.23 resulted in 6% overestimation of Rn. Using a = 0.19 instead of a = 0.23 for ETo and ETr estimations, the 6% difference in Rn translated to only 4% and 3% differences in ETo and ETr, respectively, supporting the validity of our hypothesis. Most methods had good correlations with the ASCE-EWRI Rn (r2 > 0.95). The root mean square difference (RMSD) was less than 2 MJ m-2 d-1 between 12 methods and the ASCE-EWRI Rn at Clay Center and between 14 methods and the ASCE-EWRI Rn at Davis. The performance of some methods showed variations between the two climates. In general, r2 values were higher for the semi-arid climate than for the sub-humid climate. Methods that use dynamic e as a function of mean air temperature performed better in both climates than those that calculate e using actual vapor pressure. The ASCE-EWRI-estimated Rn values had one of the best agreements with the measured Rn (r2 = 0.93, RMSD = 1.44 MJ m-2 d-1), and estimates were within 7% of the measured Rn. The Rn estimates from six methods, including the ASCE-EWRI, were not significantly different from measured Rn. Most methods underestimated measured Rn by 6% to 23%. Some of the differences between measured and estimated Rn were attributed to the poor estimation of Rnl. We conducted sensitivity analyses to evaluate the effect of Rnl on Rn, ETo, and ETr. The Rnl effect on Rn was linear and strong, but its effect on ETo and ETr was subsidiary. Results suggest that the Rn data measured over green vegetation (e.g., irrigated maize canopy) can be an alternative Rn data source for ET estimations when measured Rn data over the reference surface are not available. In the absence of measured Rn, another alternative would be using one of the Rn models that we analyzed when all the input variables are not available to solve the ASCE-EWRI Rn equation. Our results can be used to provide practical information on which method to select based on data availability for reliable estimates of daily Rn in climates similar to Clay Center and Davis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dentistry, basic imaging techniques such as intraoral and panoramic radiography are in most cases the only imaging techniques required for the detection of pathology. Conventional intraoral radiographs provide images with sufficient information for most dental radiographic needs. Panoramic radiography produces a single image of both jaws, giving an excellent overview of oral hard tissues. Regardless of the technique, plain radiography has only a limited capability in the evaluation of three-dimensional (3D) relationships. Technological advances in radiological imaging have moved from two-dimensional (2D) projection radiography towards digital, 3D and interactive imaging applications. This has been achieved first by the use of conventional computed tomography (CT) and more recently by cone beam CT (CBCT). CBCT is a radiographic imaging method that allows accurate 3D imaging of hard tissues. CBCT has been used for dental and maxillofacial imaging for more than ten years and its availability and use are increasing continuously. However, at present, only best practice guidelines are available for its use, and the need for evidence-based guidelines on the use of CBCT in dentistry is widely recognized. We evaluated (i) retrospectively the use of CBCT in a dental practice, (ii) the accuracy and reproducibility of pre-implant linear measurements in CBCT and multislice CT (MSCT) in a cadaver study, (iii) prospectively the clinical reliability of CBCT as a preoperative imaging method for complicated impacted lower third molars, and (iv) the tissue and effective radiation doses and image quality of dental CBCT scanners in comparison with MSCT scanners in a phantom study. Using CBCT, subjective identification of anatomy and pathology relevant in dental practice can be readily achieved, but dental restorations may cause disturbing artefacts. CBCT examination offered additional radiographic information when compared with intraoral and panoramic radiographs. In terms of the accuracy and reliability of linear measurements in the posterior mandible, CBCT is comparable to MSCT. CBCT is a reliable means of determining the location of the inferior alveolar canal and its relationship to the roots of the lower third molar. CBCT scanners provided adequate image quality for dental and maxillofacial imaging while delivering considerably smaller effective doses to the patient than MSCT. The observed variations in patient dose and image quality emphasize the importance of optimizing the imaging parameters in both CBCT and MSCT.