980 resultados para Récepteur à tyrosine kinase
Resumo:
Serum levels of troponin and heart-related fraction of creatine kinase (CK-MB) mass are used as diagnostic and prognostic criteria in myocardial infarction, but the relation between those levels and-the necropsy-determined size of necrosis has not been tested in human beings. In this retrospective study, 1-cm-thick transverse sections of the ventricles were cut from the base to the apex in the necropsy hearts of 27 patients aged 47 to 86 years (mean 66, median 69; 19 men). Total and necrotic areas were measured using a computer-linked image analysis system. The weights of the necrotic areas were also calculated. The correlations of the areas and weights of necrotic myocardium with the highest serum values of CK-MB mass and troponin 1, which had been quantified during life by chemiluminescence immunoassays, were verified by Pearson`s test; results were considered significant at p <= 50.05. Significant correlations were detected between CK-MB mass peak and infarct size (r = 0.63, p < 0.01) and weight (r = 0.69, p < 0.01) and between CK-MB mass and highest troponin level (r = 0.73, p < 0.01); however, the correlations between highest troponin level and myocardial infarct size (r = 0.31, p = 0.11) and weight (r = 0.35, p = 0.07) were small and nonsignificant. In conclusion, despite the well-established role of serum levels of troponin as a diagnostic tool for myocardial infarction, their highest values showed poor correlations with the extent of infarct. In contrast, the highest serum level of CK-MB mass was well correlated with myocardial infarct size. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective: Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are a family of enzymes strongly involved in the regulation of cell growth and differentiation. Since there is no information concerning the relationship between osteoblastic differentiation and LMW-PTP expression/activity, we investigated its involvement during human osteoblast-like cells (hFOB 1.19) differentiation. It is known that LMW-PTP is regulated by an elegant redox mechanism, so we also observed how the osteoblastic differentiation affected the reduced glutathione levels. Design: hFOB 1.19 cells were cultured in DMEM/F12 up to 35 days. The osteoblast phenotype acquisition was monitored by measuring alkaline phosphatase activity and mineralized nodule formation by Von Kossa staining. LMW-PTP activity and expression were measured using the p-nitrophenylphosphate as substrate and Western blotting respectively. Crystal violet assay determined the cell number in each experimental point. Glutathione level was determined by both HPLC and DNTB assays. Results: LMW-PTP modulation was coincident with the osteoblastic differentiation biomarkers, such as alkaline phosphatase activity and presence of nodules of mineralization in Vitro. Likewise LMW-PTP, the reduced glutathione-dependent microenvironment was modulated during osteoblastic differentiation. During this process, LMW-PTP expression/activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day (p < 0.001) of culturing, decreasing thereafter. Conclusions: Our results clearly suggest that LMW-PTP expression/activity was rigorously modulated during osteoblastic differentiation, possibly in response to the redox status of the cells, since it seems to depend on suitable levels of reduced glutathione. in this way, we pointed out LMW-PTP as an important signaling molecule in osteoblast biology and bone formation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The bone formation executed by osteoblasts represents an interesting research field both for basic and applied investigations. The goal of this work was to evaluate the molecular mechanisms involved during osteoblast differentiation in vitro. Accordingly, we demonstrated that, during the osteoblastic differentiation, TIMP-2 and RECK presented differential expressions, where RECK expression was downregulated from the 14th day in contrast with an increase in TIMP-2. Concomitantly, our results showed a temporal regulation of two major signaling cascades during osteoblast differentiation: proliferation cascades in which RECK, PI3 K, and GSK-3 beta play a pivotal role and latter, differentiation cascades with participation of Ras, Rho, Rac-1, PKC alpha/beta, and TIMP-2. Furthermore, we observed that phosphorylation level of paxillin was downregulated while FAK(125) remained unchangeable, but active during extracellular matrix (ECM) remodeling. Concluding, our results provide evidences that RECK and TIMP-2 are involved in the control of ECM remodeling in distinct phases of osteoblast differentiation by modulating MMP activities and a multitude of signaling proteins governs these events.
Resumo:
There is evidence that nitric oxide plays a role in the neurotransmitter balance within the basal ganglia and in the pathology of Parkinson`s disease. In the present work we investigated in striatal 6-hydroxydopamine (6-OHDA) lesioned rats the effects of a nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine (L-NOARG), given systemically on both the dopaminergic (DA) neuronal loss and the neuronal NOS cell density. We analyzed the DA neuronal loss through tyrosine hydroxylase immunohistochemistry (TH). The nitrergic system was evaluated using an antibody against the neuronal NOS (nNOS) isoform. Treatment with the L-NOARG significantly reduced 6-OHDA-induced dopaminergic damage in the dorsal striatum, ventral substantia nigra and lateral globus pallidus, but had no effects in the dorsal substantia nigra and in the cingulate cortex. Furthermore, L-NOARG reduced 6-OHDA-induced striatal increase, and substantia nigra compacta decrease, in the density of neuronal nitric oxide synthase positive cells. These results suggest that nitric oxide synthase inhibition may decrease the toxic effects of 6-OHDA on dopaminergic terminals and on dopamine cell bodies in sub-regions of the SN and on neuronal nitric oxide synthase cell density in the rat brain. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim was to examine the functional importance in the norepinephrine transporter (NET) of (i) the phenylalanine residue at position 531 in transmembrane domain (TMD) 11 by mutating it to tyrosine in the rat (rF531Y) and human (hF531Y) NETs and (ii) the highly conserved tyrosine residues at positions 249 in TMD 4 of human NET (hNET) (mutated to alanine: hY249A) and 271 in TMD 5, by mutating to alanine (hY271A), phenylalanine (hY271F) and histidine (hY271H). The effects of the mutations on NET function were for uptake of the substrates, examined by expressing the mutant and wildtype NETs in COS-7 cells and measuring the K-m and V-max for uptake of the substrates, [H-3]norepinephrine, [H-3]MPP+ and [H-3]dopamine, the K-D and B-max for [H-3]nisoxetine binding and the K-i of the inhibitors, nisoxetine, desipramine and cocaine, for inhibition of [H-3]norepinephrine uptake. The K-m values of the substrates were lower for the mutants at amino acid 271 than hNET and unaffected for the other mutants, and each mutant had a significantly lower than NET for substrate uptake. The mutations at position 271 caused an increase in the K-i or K-D values of nisoxetine, desipramine and cocaine, but there were no effects for the other mutations. Hence, the 271 tyrosine residue in TMD 5 is an important determinant of NET function, with the mutants showing an increase in the apparent affinities of substrates and a decrease in the apparent affinities of inhibitors, but the 249 tyrosine and 531 phenylalanine residues do not have a major role in determining NET function. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Recent studies have provided evidence that breast cancer susceptibility gene products (Brca1 and Brca2) suppress cancer, at least in part, by participating in DNA damage signaling and DNA repair. Brca1 is hyperphosphorylated in response to DNA damage and co-localizes with Rad51, a protein involved in homologous-recombination, and Nbs1·Mre11·Rad50, a complex required for both homologous-recombination and nonhomologous end joining repair of damaged DNA. Here, we report that there is a qualitative difference in the phosphorylation states of Brca1 between ionizing radiation (IR) and UV radiation. Brca1 is phosphorylated at Ser-1423 and Ser-1524 after IR and UV; however, Ser-1387 is specifically phosphorylated after IR, and Ser-1457 is predominantly phosphorylated after UV. These results suggest that different types of DNA-damaging agents might signal to Brca1 in different ways. We also provide evidence that the rapid phosphorylation of Brca1 at Ser-1423 and Ser-1524 after IR (but not after UV) is largely ataxia telangiectasia mutated (ATM) kinase-dependent. The overexpression of catalytically inactive ATM and Rad3 related (ATR) kinase inhibited the UV-induced phosphorylation of Brca1 at these sites, indicating that ATR controls Brca1 phosphorylation in vivo after the exposure of cells to UV light. Moreover, ATR associates with Brca1; ATR and Brca1 foci co-localize both in cells synchronized in S phase and after exposure of cells to DNA-damaging agents. ATR can itself phosphorylate the region of Brca1 phosphorylated by ATM (Ser-Gln cluster in the C terminus of Brca1, amino acids 1241-1530). However, there are additional uncharacterized ATR phosphorylation site(s) between residues 521 and 757 of Brca1. Taken together, our results support a model in which ATM and ATR act in parallel but somewhat overlapping pathways of DNA damage signaling but respond primarily to different types of DNA lesion.
Resumo:
The marine toxin bistratene A (BisA) potently induces cytostasis and differentiation in a variety of systems. Evidence that BisA is a selective activator of protein kinase C (PKC) delta implicates PKC delta signaling in the negative growth-regulatory effects of this agent. The current study further investigates the signaling pathways activated by BisA by comparing its effects with those of the PKC agonist phorbol 12-myristate 13-acetate (PMA) in the IEC-18 intestinal crypt cell line. Both BisA and PMA induced cell cycle arrest in these cells, albeit with different kinetics. While BisA produced sustained cell cycle arrest in G(o)/G(1) and G(2)/M, the effects of PMA were transient and involved mainly a G(o)/G(1), blockade. BisA also produced apoptosis in a proportion of the population, an effect not seen with PMA. Both agents induced membrane translocation/activation of PKC, with BisA translocating only PKC delta and PMA translocating PKC alpha, delta, and epsilon in these cells. Notably, while depletion of PKC alpha, delta, and epsilon abrogated the cell cycle-specific effects of PMA in IEC-18 cells, the absence of these PKC isozymes failed to inhibit BisA-induced G(o)/G(1), and G(2)/M arrest or apoptosis. The cell cycle inhibitory and apoptotic effects of BisA, therefore, appear to be PKC-independent in IEG-18 cells. On the other hand, BisA and PMA both promoted PKC-dependent activation of Erk 1 and 2 in this system. Thus, intestinal epithelial cells respond to BisA through activation of at least two signaling pathways: a PKC delta -dependent pathway, which leads to activation of mitogen-activated protein kinase and possibly cytostasis in the appropriate context, and a PKC-independent pathway, which induces both cell cycle arrest in G(o)/G(1) and G(2)/M and apoptosis through as yet unknown mechanisms. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
In the honeybee the cAMP-dependent signal transduction cascade has been implicated in processes underlying learning and memory, The cAMP-dependent protein kinase (PKA) is the major mediator of cAMP action. To characterize the PKA system in the honeybee brain we cloned a homologue of a PKA catalytic subunit from the honeybee,The deduced amino acid sequence shows 80-94% identity with catalytic subunits of PKA from Drosophila melanogaster, Aplysia californica and mammals. The corresponding gene is predominantly expressed in the mushroom bodies, a structure that is involved in learning and memory processes. However, expression can also be found in the antennal and optic lobes,The level of expression varies within all three neuropiles.
Resumo:
Recent studies have provided evidence that breast cancer susceptibility gene products (Brca1 and Brca2) suppress cancer, at least in part, by participating in DNA damage signaling and DNA repair. Brca1 is hyperphosphorylated in response to DNA damage and co-localizes with Rad51, a protein involved in homologous-recombination, and Nbs1.Mre11.Rad50, a complex required for both homologous-recombination and nonhomologous end joining repair of damaged DNA. Here, we report that there is a qualitative difference in the phosphorylation states of Brca1 between ionizing radiation (IR) and UV radiation. Brca1 is phosphorylated at Ser-1423 and Ser-1524 after IR and W; however, Ser-1387 is specifically phosphorylated after IR, and Ser-1457 is predominantly phosphorylated after W. These results suggest that different types of DNA-damaging agents might signal to Brca1 in different ways. We also provide evidence that the rapid phosphorylation of Brca1 at Ser-1423 and Ser-1524 after IR (but not after W) is largely ataxia telangiectasia mutated (ATM) kinase-dependent. The overexpression of catalytically inactive ATM and Rad3 related (ATR) kinase inhibited the UV-induced phosphorylation of Brca1 at these sites, indicating that ATR controls Brca1 phosphorylation in vivo after the exposure of cells to UV light. Moreover, ATR associates with Brca1; ATR and Brca1 foci co-localize both in cells synchronized in S phase and after exposure of cells to DNA-damaging agents. ATR can itself phosphorylate the region of Brca1 phosphorylated by ATM (Ser-Gln cluster in the C terminus of Brca1, amino acids 1241-1530), However, there are additional uncharacterized ATR phosphorylation site(s) between residues 521 and 757 of Brca1, Taken together, our results support a model in which ATM and ATR act in parallel but somewhat overlapping pathways of DNA damage signaling but respond primarily to different types of DNA lesion.
Resumo:
We have identified a novel, highly conserved protein of 14 kD copurifying with late endosomes/lysosomes on density gradients. The protein, now termed p14, is peripherally associated with the cytoplasmic face of late endosomes/lysosomes in a variety of different cell types. In a two-hybrid screen with p14 as a bait, we identified the mitogen-activated protein kinase (MAPK) scaffolding protein MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) partner 1 (MP1) as an interacting protein. We confirmed the specificity of this interaction in vitro by glutathione S-transferase pull-down assays and by coimmunoprecipitation, cosedimentation on glycerol gradients, and colocalization. Moreover, expression of a plasma membrane-targeted p14 causes mislocalization of coexpressed MP1. In addition, we could reconstitute protein complexes containing the p14-MP1 complex associated with ERK and MEK in vitro. The interaction between p14 and MP1 suggests a MAPK scaffolding activity localized to the cytoplasmic surface of late endosomes/lysosomes, thereby combining catalytic scaffolding and subcellular compartmentalization as means to modulate MAPK signaling within a cell.
Resumo:
Ha-Ras and Ki-Ras have different distributions across plasma membrane microdomains. The Ras C-terminal anchors are primarily responsible for membrane microlocalization, but recent work has shown that the interaction of Ha-Ras with lipid rafts is modulated by GTP loading via a mechanism that requires the hypervariable region (HVR). We have now identified two regions in the HVR linker domain that regulate Ha-Ras raft association. Release of activated Ha-Ras from lipid rafts is blocked by deleting amino acids 173-179 or 166-172. Alanine replacement of amino acids 173-179 but not 166-172 restores wild type micro-localization, indicating that specific N-terminal sequences of the linker domain operate in concert with a more C-terminal spacer domain to regulate Ha-Ras raft association. Mutations in the linker domain that confine activated Ha-RasG12V to lipid rafts abrogate Raf-1, phosphoinositide 3-kinase, and Akt activation and inhibit PC 12 cell differentiation. N-Myristoylation also prevents the release of activated Ha-Ras from lipid rafts and inhibits Raf-1 activation. These results demonstrate that the correct modulation of Ha-Ras lateral segregation is critical for downstream signaling. Mutations in the linker domain also suppress the dominant negative phenotype of Ha-RasS17N, indicating that HVR sequences are essential for efficient interaction of Ha-Ras with exchange factors in intact cells.
Resumo:
A method based on isothermal calorimetry is described for the direct kinetic assay of pyruvate kinase. In agreement with earlier findings based on the standard coupled assay system for this enzyme in the presence of a fixed ADP concentration, the essentially rectangular hyperbolic dependence of initial velocity upon phosphoenolpyruvate concentration is rendered sigmoidal by the allosteric inhibitor phenylalanine. This effect of phenylalanine can be countered by including a high concentration of a space- filling osmolyte such as proline in the reaction mixtures. This investigation thus affords a dramatic example that illustrates the need to consider potential consequences of thermodynamic nonideality on the kinetics of enzyme reactions in crowded molecular environments such as the cell cytoplasm.
Resumo:
Classical cadherins mediate cell recognition and cohesion in many tissues of the body. It is increasingly apparent that dynamic cadherin contacts play key roles during morphogenesis and that a range of cell signals are activated as cells form contacts with one another. It has been difficult, however, to determine whether these signals represent direct downstream consequences of cadherin ligation or are juxtacrine signals that are activated when cadherin adhesion brings cell surfaces together but are not direct downstream targets of cadherin signaling. In this study, we used a functional cadherin ligand (hE/Fc) to directly test whether E-cadherin ligation regulates phosphatidylinositol 3-kinase (PI 3-kinase) and Rac signaling. We report that homophilic cadherin ligation recruits Rae to nascent adhesive contacts and specifically stimulates Rae signaling. Adhesion to hE/Fc also recruits PI 3-kinase to the cadherin complex, leading to the production of phosphatidylinositol 3,4,5-trisphosphate in nascent cadherin contacts. Rae activation involved an early phase, which was PI 3-kinase-independent, and a later amplification phase, which was inhibited by wortmannin. PI 3-kinase and Rae activity were necessary for productive adhesive contacts to form following initial homophilic ligation. We conclude that E-cadherin is a cellular receptor that is activated upon homophilic ligation to signal through PI 3-kinase and Rae. We propose that a key function of these cadherin-activated signals is to control adhesive contacts, probably via regulation of the actin cytoskeleton, which ultimately serves to mediate adhesive cell-cell recognition.
Resumo:
Neuronal and glial high-affinity transporters regulate extracellular glutamate concentration, thereby terminating synaptic transmission and preventing neuronal excitotoxicity. Glutamate transporter activity has been shown to be modulated by protein kinase C (PKC) in cell culture. This is the first study to demonstrate such modulation in situ, by following the fate of the non-metabolisable glutamate transporter substrate, D-aspartate. In the rat retina, pan-isoform PKC inhibition with chelerythrine suppressed glutamate uptake by GLAST (glutamate/aspartate transporter), the dominant excitatory amino acid transporter localized to the glial Muller cells. This effect was mimicked by rottlerin but not by Go6976, suggesting the involvement of the PKCdelta isoform, but not PKCalpha, beta or gamma. Western blotting and immunohistochemical labeling revealed that the suppression of glutamate transport was not due to a change in transporter expression. Inhibition of PKCdelta selectively suppressed GLAST but not neuronal glutamate transporter activity. These data suggest that the targeting of specific glutamate transporters with isoform-specific modulators of PKC activity may have significant implications for the understanding of neurodegenerative conditions arising from compromised glutamate homeostasis, e.g. glaucoma and amyotrophic lateral sclerosis.