944 resultados para Quantitative Methods
Resumo:
Objective: The PEM Flex Solo II (Naviscan, Inc., San Diego, CA) is currently the only commercially-available positron emission mammography (PEM) scanner. This scanner does not apply corrections for count rate effects, attenuation or scatter during image reconstruction, potentially affecting the quantitative accuracy of images. This work measures the overall quantitative accuracy of the PEM Flex system, and determines the contributions of error due to count rate effects, attenuation and scatter. Materials and Methods: Gelatin phantoms were designed to simulate breasts of different sizes (4 – 12 cm thick) with varying uniform background activity concentration (0.007 – 0.5 μCi/cc), cysts and lesions (2:1, 5:1, 10:1 lesion-to-background ratios). The overall error was calculated from ROI measurements in the phantoms with a clinically relevant background activity concentration (0.065 μCi/cc). The error due to count rate effects was determined by comparing the overall error at multiple background activity concentrations to the error at 0.007 μCi/cc. A point source and cold gelatin phantoms were used to assess the errors due to attenuation and scatter. The maximum pixel values in gelatin and in air were compared to determine the effect of attenuation. Scatter was evaluated by comparing the sum of all pixel values in gelatin and in air. Results: The overall error in the background was found to be negative in phantoms of all thicknesses, with the exception of the 4-cm thick phantoms (0%±7%), and it increased with thickness (-34%±6% for the 12-cm phantoms). All lesions exhibited large negative error (-22% for the 2:1 lesions in the 4-cm phantom) which increased with thickness and with lesion-to-background ratio (-85% for the 10:1 lesions in the 12-cm phantoms). The error due to count rate in phantoms with 0.065 μCi/cc background was negative (-23%±6% for 4-cm thickness) and decreased with thickness (-7%±7% for 12 cm). Attenuation was a substantial source of negative error and increased with thickness (-51%±10% to -77% ±4% in 4 to 12 cm phantoms, respectively). Scatter contributed a relatively constant amount of positive error (+23%±11%) for all thicknesses. Conclusion: Applying corrections for count rate, attenuation and scatter will be essential for the PEM Flex Solo II to be able to produce quantitatively accurate images.
Resumo:
BACKGROUND: Quantitative myocardial PET perfusion imaging requires partial volume corrections. METHODS: Patients underwent ECG-gated, rest-dipyridamole, myocardial perfusion PET using Rb-82 decay corrected in Bq/cc for diastolic, systolic, and combined whole cycle ungated images. Diastolic partial volume correction relative to systole was determined from the systolic/diastolic activity ratio, systolic partial volume correction from phantom dimensions comparable to systolic LV wall thicknesses and whole heart cycle partial volume correction for ungated images from fractional systolic-diastolic duration for systolic and diastolic partial volume corrections. RESULTS: For 264 PET perfusion images from 159 patients (105 rest-stress image pairs, 54 individual rest or stress images), average resting diastolic partial volume correction relative to systole was 1.14 ± 0.04, independent of heart rate and within ±1.8% of stress images (1.16 ± 0.04). Diastolic partial volume corrections combined with those for phantom dimensions comparable to systolic LV wall thickness gave an average whole heart cycle partial volume correction for ungated images of 1.23 for Rb-82 compared to 1.14 if positron range were negligible as for F-18. CONCLUSION: Quantitative myocardial PET perfusion imaging requires partial volume correction, herein demonstrated clinically from systolic/diastolic absolute activity ratios combined with phantom data accounting for Rb-82 positron range.
Resumo:
PURPOSE Positron emission tomography (PET)∕computed tomography (CT) measurements on small lesions are impaired by the partial volume effect, which is intrinsically tied to the point spread function of the actual imaging system, including the reconstruction algorithms. The variability resulting from different point spread functions hinders the assessment of quantitative measurements in clinical routine and especially degrades comparability within multicenter trials. To improve quantitative comparability there is a need for methods to match different PET∕CT systems through elimination of this systemic variability. Consequently, a new method was developed and tested that transforms the image of an object as produced by one tomograph to another image of the same object as it would have been seen by a different tomograph. The proposed new method, termed Transconvolution, compensates for differing imaging properties of different tomographs and particularly aims at quantitative comparability of PET∕CT in the context of multicenter trials. METHODS To solve the problem of image normalization, the theory of Transconvolution was mathematically established together with new methods to handle point spread functions of different PET∕CT systems. Knowing the point spread functions of two different imaging systems allows determining a Transconvolution function to convert one image into the other. This function is calculated by convolving one point spread function with the inverse of the other point spread function which, when adhering to certain boundary conditions such as the use of linear acquisition and image reconstruction methods, is a numerically accessible operation. For reliable measurement of such point spread functions characterizing different PET∕CT systems, a dedicated solid-state phantom incorporating (68)Ge∕(68)Ga filled spheres was developed. To iteratively determine and represent such point spread functions, exponential density functions in combination with a Gaussian distribution were introduced. Furthermore, simulation of a virtual PET system provided a standard imaging system with clearly defined properties to which the real PET systems were to be matched. A Hann window served as the modulation transfer function for the virtual PET. The Hann's apodization properties suppressed high spatial frequencies above a certain critical frequency, thereby fulfilling the above-mentioned boundary conditions. The determined point spread functions were subsequently used by the novel Transconvolution algorithm to match different PET∕CT systems onto the virtual PET system. Finally, the theoretically elaborated Transconvolution method was validated transforming phantom images acquired on two different PET systems to nearly identical data sets, as they would be imaged by the virtual PET system. RESULTS The proposed Transconvolution method matched different PET∕CT-systems for an improved and reproducible determination of a normalized activity concentration. The highest difference in measured activity concentration between the two different PET systems of 18.2% was found in spheres of 2 ml volume. Transconvolution reduced this difference down to 1.6%. In addition to reestablishing comparability the new method with its parameterization of point spread functions allowed a full characterization of imaging properties of the examined tomographs. CONCLUSIONS By matching different tomographs to a virtual standardized imaging system, Transconvolution opens a new comprehensive method for cross calibration in quantitative PET imaging. The use of a virtual PET system restores comparability between data sets from different PET systems by exerting a common, reproducible, and defined partial volume effect.
Resumo:
A new technique for the detection of microbiological fecal pollution in drinking and in raw surface water has been modified and tested against the standard multiple-tube fermentation technique (most-probable-number, MPN). The performance of the new test in detecting fecal pollution in drinking water has been tested at different incubation temperatures. The basis for the new test was the detection of hydrogen sulfide produced by the hydrogen sulfide producing bacteria which are usually associated with the coliform group. The positive results are indicated by the appearance of a brown to black color in the contents of the fermentation tube within 18 to 24 hours of incubation at 35 (+OR-) .5(DEGREES)C. For this study 158 water samples of different sources have been used. The results were analyzed statistically with the paired t-test and the one-way analysis of variance. No statistically significant difference was noticed between the two methods, when tested 35 (+OR-) .5(DEGREES)C, in detecting fecal pollution in drinking water. The new test showed more positive results with raw surface water, which could be due to the presence of hydrogen sulfide producing bacteria of non-fecal origin like Desulfovibrio and Desulfomaculum. The survival of the hydrogen sulfide producing bacteria and the coliforms was also tested over a 7-day period, and the results showed no significant difference. The two methods showed no significant difference when used to detect fecal pollution at a very low coliform density. The results showed that the new test is mostly effective, in detecting fecal pollution in drinking water, when used at 35 (+OR-) .5(DEGREES)C. The new test is effective, simple, and less expensive when used to detect fecal pollution in drinking water and raw surface water at 35 (+OR-) .5(DEGREES)C. The method can be used for qualitative and/or quantitative analysis of water in the field and in the laboratory. ^
Resumo:
BACKGROUND Prediction studies in subjects at Clinical High Risk (CHR) for psychosis are hampered by a high proportion of uncertain outcomes. We therefore investigated whether quantitative EEG (QEEG) parameters can contribute to an improved identification of CHR subjects with a later conversion to psychosis. METHODS This investigation was a project within the European Prediction of Psychosis Study (EPOS), a prospective multicenter, naturalistic field study with an 18-month follow-up period. QEEG spectral power and alpha peak frequencies (APF) were determined in 113 CHR subjects. The primary outcome measure was conversion to psychosis. RESULTS Cox regression yielded a model including frontal theta (HR=1.82; [95% CI 1.00-3.32]) and delta (HR=2.60; [95% CI 1.30-5.20]) power, and occipital-parietal APF (HR=.52; [95% CI .35-.80]) as predictors of conversion to psychosis. The resulting equation enabled the development of a prognostic index with three risk classes (hazard rate 0.057 to 0.81). CONCLUSIONS Power in theta and delta ranges and APF contribute to the short-term prediction of psychosis and enable a further stratification of risk in CHR samples. Combined with (other) clinical ratings, EEG parameters may therefore be a useful tool for individualized risk estimation and, consequently, targeted prevention.
Resumo:
AIMS: We conducted a meta-analysis to evaluate the accuracy of quantitative stress myocardial contrast echocardiography (MCE) in coronary artery disease (CAD). METHODS AND RESULTS: Database search was performed through January 2008. We included studies evaluating accuracy of quantitative stress MCE for detection of CAD compared with coronary angiography or single-photon emission computed tomography (SPECT) and measuring reserve parameters of A, beta, and Abeta. Data from studies were verified and supplemented by the authors of each study. Using random effects meta-analysis, we estimated weighted mean difference (WMD), likelihood ratios (LRs), diagnostic odds ratios (DORs), and summary area under curve (AUC), all with 95% confidence interval (CI). Of 1443 studies, 13 including 627 patients (age range, 38-75 years) and comparing MCE with angiography (n = 10), SPECT (n = 1), or both (n = 2) were eligible. WMD (95% CI) were significantly less in CAD group than no-CAD group: 0.12 (0.06-0.18) (P < 0.001), 1.38 (1.28-1.52) (P < 0.001), and 1.47 (1.18-1.76) (P < 0.001) for A, beta, and Abeta reserves, respectively. Pooled LRs for positive test were 1.33 (1.13-1.57), 3.76 (2.43-5.80), and 3.64 (2.87-4.78) and LRs for negative test were 0.68 (0.55-0.83), 0.30 (0.24-0.38), and 0.27 (0.22-0.34) for A, beta, and Abeta reserves, respectively. Pooled DORs were 2.09 (1.42-3.07), 15.11 (7.90-28.91), and 14.73 (9.61-22.57) and AUCs were 0.637 (0.594-0.677), 0.851 (0.828-0.872), and 0.859 (0.842-0.750) for A, beta, and Abeta reserves, respectively. CONCLUSION: Evidence supports the use of quantitative MCE as a non-invasive test for detection of CAD. Standardizing MCE quantification analysis and adherence to reporting standards for diagnostic tests could enhance the quality of evidence in this field.
Resumo:
Although there is dissimiliarity in theoretical research approaches to subjective well-being and to assessments of well-being, there is agreement regarding the value of well-being, especially among student populations. In the highly structured, achievement-oriented, non-optimal context of a classroom, individual well-being is a necessary pre-condition for learning. Among student populations well-being should not be construed as an achievement enhancer; but, rather, recognized and measured as an educational value of its own. However, it is necessary for the positive bias towards learning at least in highly structured, achievement-orientated, non-optional learning contexts like school [cf. Hascher, T. (2004). Wohlbefinden in der Schule. Münster: Waxmann]. How can it be measured? Since different research approaches lead to a variety of instruments, the following paper will focus on two ways of assessing well-being in school: a questionnaire on student well-being (N = 2014) 1 and a semi-structured daily diary about relevant emotional situations in school (N = 58, period 3 × 2 weeks). Both methods are introduced and their methodological quality is discussed in terms of reliability, validity and in terms of their usefulness for improving school practice. Furthermore, the research potential of combining quantitative and qualitative data on students’ well-being is addressed.
Resumo:
PURPOSE Fundus autofluorescence (FAF) cannot only be characterized by the intensity or the emission spectrum, but also by its lifetime. As the lifetime of a fluorescent molecule is sensitive to its local microenvironment, this technique may provide more information than fundus autofluorescence imaging. We report here the characteristics and repeatability of FAF lifetime measurements of the human macula using a new fluorescence lifetime imaging ophthalmoscope (FLIO). METHODS A total of 31 healthy phakic subjects were included in this study with an age range from 22 to 61 years. For image acquisition, a fluorescence lifetime ophthalmoscope based on a Heidelberg Engineering Spectralis system was used. Fluorescence lifetime maps of the retina were recorded in a short- (498-560 nm) and a long- (560-720 nm) spectral channel. For quantification of fluorescence lifetimes a standard ETDRS grid was used. RESULTS Mean fluorescence lifetimes were shortest in the fovea, with 208 picoseconds for the short-spectral channel and 239 picoseconds for the long-spectral channel, respectively. Fluorescence lifetimes increased from the central area to the outer ring of the ETDRS grid. The test-retest reliability of FLIO was very high for all ETDRS areas (Spearman's ρ = 0.80 for the short- and 0.97 for the long-spectral channel, P < 0.0001). Fluorescence lifetimes increased with age. CONCLUSIONS The FLIO allows reproducible measurements of fluorescence lifetimes of the macula in healthy subjects. By using a custom-built software, we were able to quantify fluorescence lifetimes within the ETDRS grid. Establishing a clinically accessible standard against which to measure FAF lifetimes within the retina is a prerequisite for future studies in retinal disease.
Resumo:
BACKGROUND Pressure ulcers are associated with severe impairment for the patients and high economic load. With this study we wanted to gain more insight to the skin perfusion dynamics due to external loading. Furthermore, we evaluated the effect of different types of pressure relief mattresses. METHODS A total of 25 healthy volunteers were enrolled in the study. Perfusion dynamics of the sacral and the heel area were assessed using the O2C-device, which combines a laser light, to determine blood flow, and white light to determine the relative amount of hemoglobin. Three mattresses were evaluated compared to a hard surface: a standard hospital foam mattress bed, a visco-elastic foam mattress, and an air-fluidized bed. RESULTS In the heel area, only the air-fluidized bed was able to maintain the blood circulation (mean blood flow of 13.6 ± 6 versus 3.9 ± 3 AU and mean relative amount of hemoglobin of 44.0 ± 14 versus 32.7 ± 12 AU.) In the sacral area, all used mattresses revealed an improvement of blood circulation compared to the hard surface. CONCLUSION The results of this study form a more precise pattern of perfusion changes due to external loading on various pressure relief mattresses. This knowledge may reduce the incidence of pressure ulcers and may be an influencing factor in pressure relief mattress selection.
Resumo:
In patients diagnosed with pharmaco-resistant epilepsy, cerebral areas responsible for seizure generation can be defined by performing implantation of intracranial electrodes. The identification of the epileptogenic zone (EZ) is based on visual inspection of the intracranial electroencephalogram (IEEG) performed by highly qualified neurophysiologists. New computer-based quantitative EEG analyses have been developed in collaboration with the signal analysis community to expedite EZ detection. The aim of the present report is to compare different signal analysis approaches developed in four different European laboratories working in close collaboration with four European Epilepsy Centers. Computer-based signal analysis methods were retrospectively applied to IEEG recordings performed in four patients undergoing pre-surgical exploration of pharmaco-resistant epilepsy. The four methods elaborated by the different teams to identify the EZ are based either on frequency analysis, on nonlinear signal analysis, on connectivity measures or on statistical parametric mapping of epileptogenicity indices. All methods converge on the identification of EZ in patients that present with fast activity at seizure onset. When traditional visual inspection was not successful in detecting EZ on IEEG, the different signal analysis methods produced highly discordant results. Quantitative analysis of IEEG recordings complement clinical evaluation by contributing to the study of epileptogenic networks during seizures. We demonstrate that the degree of sensitivity of different computer-based methods to detect the EZ in respect to visual EEG inspection depends on the specific seizure pattern.
Resumo:
OBJECTIVES To assess the available evidence on the effectiveness of accelerated orthodontic tooth movement through surgical and non-surgical approaches in orthodontic patients. METHODS Randomized controlled trials and controlled clinical trials were identified through electronic and hand searches (last update: March 2014). Orthognathic surgery, distraction osteogenesis, and pharmacological approaches were excluded. Risk of bias was assessed using the Cochrane risk of bias tool. RESULTS Eighteen trials involving 354 participants were included for qualitative and quantitative synthesis. Eight trials reported on low-intensity laser, one on photobiomodulation, one on pulsed electromagnetic fields, seven on corticotomy, and one on interseptal bone reduction. Two studies on corticotomy and two on low-intensity laser, which had low or unclear risk of bias, were mathematically combined using the random effects model. Higher canine retraction rate was evident with corticotomy during the first month of therapy (WMD=0.73; 95% CI: 0.28, 1.19, p<0.01) and with low-intensity laser (WMD=0.42mm/month; 95% CI: 0.26, 0.57, p<0.001) in a period longer than 3 months. The quality of evidence supporting the interventions is moderate for laser therapy and low for corticotomy intervention. CONCLUSIONS There is some evidence that low laser therapy and corticotomy are effective, whereas the evidence is weak for interseptal bone reduction and very weak for photobiomodulation and pulsed electromagnetic fields. Overall, the results should be interpreted with caution given the small number, quality, and heterogeneity of the included studies. Further research is required in this field with additional attention to application protocols, adverse effects, and cost-benefit analysis. CLINICAL SIGNIFICANCE From the qualitative and quantitative synthesis of the studies, it could be concluded that there is some evidence that low laser therapy and corticotomy are associated with accelerated orthodontic tooth movement, while further investigation is required before routine application.
Resumo:
PURPOSE Currently, the diagnosis of pedicle screw (PS) loosening is based on a subjectively assessed halo sign, that is, a radiolucent line around the implant wider than 1 mm in plain radiographs. We aimed at development and validation of a quantitative method to diagnose PS loosening on radiographs. METHODS Between 11/2004 and 1/2010 36 consecutive patients treated with thoraco-lumbar spine fusion with PS instrumentation without PS loosening were compared with 37 other patients who developed a clinically manifesting PS loosening. Three different angles were measured and compared regarding their capability to discriminate the loosened PS over the postoperative course. The inter-observer invariance was tested and a receiver operating characteristics curve analysis was performed. RESULTS The angle measured between the PS axis and the cranial endplate was significantly different between the early and all later postoperative images. The Spearman correlation coefficient for the measurements of two observers at each postoperative time point ranged between 0.89 at 2 weeks to 0.94 at 2 months and 1 year postoperative. The angle change of 1.9° between immediate postoperative and 6-month postoperative was 75% sensitive and 89% specific for the identification of loosened screws (AUC = 0.82). DISCUSSION The angle between the PS axis and the cranial endplate showed good ability to change in PS loosening. A change of this angle of at least 2° had a relatively high sensitivity and specificity to diagnose screw loosening.
Resumo:
BACKGROUND Quantitative light intensity analysis of the strut core by optical coherence tomography (OCT) may enable assessment of changes in the light reflectivity of the bioresorbable polymeric scaffold from polymer to provisional matrix and connective tissues, with full disappearance and integration of the scaffold into the vessel wall. The aim of this report was to describe the methodology and to apply it to serial human OCT images post procedure and at 6, 12, 24 and 36 months in the ABSORB cohort B trial. METHODS AND RESULTS In serial frequency-domain OCT pullbacks, corresponding struts at different time points were identified by 3-dimensional foldout view. The peak and median values of light intensity were measured in the strut core by dedicated software. A total of 303 corresponding struts were serially analyzed at 3 time points. In the sequential analysis, peak light intensity increased gradually in the first 24 months after implantation and reached a plateau (relative difference with respect to baseline [%Dif]: 61.4% at 12 months, 115.0% at 24 months, 110.7% at 36 months), while the median intensity kept increasing at 36 months (%Dif: 14.3% at 12 months, 75.0% at 24 months, 93.1% at 36 months). CONCLUSIONS Quantitative light intensity analysis by OCT was capable of detecting subtle changes in the bioresorbable strut appearance over time, and could be used to monitor the bioresorption and integration process of polylactide struts.
Resumo:
Background ‘Kneipp Therapy’ (KT) is a form of Complementary and Alternative Medicine (CAM) that includes a combination of hydrotherapy, herbal medicine, mind-body medicine, physical activities, and healthy eating. Since 2007, some nursing homes for older adults in Germany began to integrate CAM in the form of KT in care. The study investigated how KT is used in daily routine care and explored the health status of residents and caregivers involved in KT. Methods We performed a cross-sectional pilot study with a mixed methods approach that collected both quantitative and qualitative data in four German nursing homes in 2011. Assessments in the quantitative component included the Quality of Life in Dementia (QUALIDEM), the Short Form 12 Health Survey (SF-12), the Barthel-Index for residents and the Work Ability Index (WAI) and SF-12 for caregivers. The qualitative component addressed the residents’ and caregivers’ subjectively experienced changes after integration of KT. It was conceptualized as an ethnographic rapid appraisal by conducting participant observation and semi-structured interviews in two of the four nursing homes. Results The quantitative component included 64 residents (53 female, 83.2 ± 8.1 years (mean and SD)) and 29 caregivers (all female, 42.0 ± 11.7 years). Residents were multimorbid (8 ± 3 diagnoses), and activities of daily living were restricted (Barthel-Index 60.6 ± 24.4). The caregivers’ results indicated good work ability (WAI 37.4 ± 5.1), health related quality of life was superior to the German sample (SF-12 physical CSS 49.2 ± 8.0; mental CSS 54.1 ± 6.6). Among both caregivers and residents, 89% considered KT to be positive for well-being. The qualitative analysis showed that caregivers perceived emotional and functional benefits from more content and calmer residents, a larger variety in basic care practices, and a more self-determined scope of action. Residents reported gains in attention and caring, and recognition of their lay knowledge. Conclusion Residents showed typical characteristics of nursing home inhabitants. Caregivers demonstrated good work ability. Both reported to have benefits from KT. The results provide a good basis for future projects, e.g. controlled studies to evaluate the effects of CAM in nursing homes.
Resumo:
BACKGROUND Flavobacterium psychrophilum is the agent of Bacterial Cold Water Disease and Rainbow Trout Fry Syndrome, two diseases leading to high mortality. Pathogen detection is mainly carried out using cultures and more rapid and sensitive methods are needed. RESULTS We describe a qPCR technique based on the single copy gene β' DNA-dependent RNA polymerase (rpoC). Its detection limit was 20 gene copies and the quantification limit 103 gene copies per reaction. Tests on spiked spleens with known concentrations of F. psychrophilum (106 to 101 cells per reaction) showed no cross-reactions between the spleen tissue and the primers and probe. Screening of water samples and spleens from symptomless and infected fishes indicated that the pathogen was already present before the outbreaks, but F. psychrophilum was only quantifiable in spleens from diseased fishes. CONCLUSIONS This qPCR can be used as a highly sensitive and specific method to detect F. psychrophilum in different sample types without the need for culturing. qPCR allows a reliable detection and quantification of F. psychrophilum in samples with low pathogen densities. Quantitative data on F. psychrophilum abundance could be useful to investigate risk factors linked to infections and also as early warning system prior to potential devastating outbreak.