925 resultados para Pure reason
Resumo:
Copyright © Cambridge University Press 2016In her recent book, Democratic Reason, Hélène Landemore argues that, when evaluated epistemically, “a democratic decision procedure is likely to be a better decision procedure than any non-democratic decision procedures, such as a council of experts or a benevolent dictator” (p. 3). Landemore's argument rests heavily on studies of collective intelligence done by Lu Hong and Scott Page. These studies purport to show that cognitive diversity – differences in how people solve problems – is actually more important to overall group performance than average individual ability – how smart the individual members are. Landemore's argument aims to extrapolate from these results to the conclusion that democracy is epistemically better than any non-democratic rival. I argue here that Hong and Page's results actually undermine, rather than support, this conclusion. More specifically, I argue that the results do not show that democracy is better than any non-democratic alternative, and that in fact, they suggest the opposite – that at least some non-democratic alternatives are likely to epistemically outperform democracy.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
This work explores the idea of constitutional justice in Africa with a focus on constitutional interpretation in Ghana and Nigeria. The objective is to develop a theory of constitutional interpretation based upon a conception of law that allows the existing constitutions of Ghana and Nigeria to be construed by the courts as law in a manner that best serves the collective wellbeing of the people. The project involves an examination of both legal theory and substantive constitutional law. The theoretical argument will be applied to show how a proper understanding of the ideals of the rule of law and constitutionalism in Ghana and Nigeria necessitate the conclusion that socio-economic rights in those countries are constitutionally protected and judicially enforceable. The thesis argues that this conclusion follows from a general claim that constitutions should represent a ‘fundamental law’ and must be construed as an aspirational moral ideal for the common good of the people. The argument is essentially about the inherent character of ‘legality’ or the ‘rule of law.’ It weaves together ideas developed by Lon Fuller, Ronald Dworkin, T.R.S. Allan and David Dyzenhaus, as well as the strand of common law constitutionalism associated with Sir Edward Coke, to develop a moral sense of ‘law’ that transcends the confines of positive or explicit law while remaining inherently ‘legal’ as opposed to purely moral or political. What emerges is an unwritten fundamental law of reason located between pure morality or natural law on the one hand and strict, explicit, or positive law on the other. It is argued that this fundamental law is, or should be, the basis of constitutional interpretation, especially in transitional democracies like Ghana and Nigeria, and that it grounds constitutional protection for socio-economic rights. Equipped with this theory of law, courts in developing African countries like Ghana and Nigeria will be in a better position to contribute towards developing a real sense of constitutional justice for Africa.
Resumo:
This paper examines the effects of higher-order risk attitudes and statistical moments on the optimal allocation of risky assets within the standard portfolio choice model. We derive the expressions for the optimal proportion of wealth invested in the risky asset to show they are functions of portfolio returns third- and fourth-order moments as well as on the investor’s risk preferences of prudence and temperance. We illustrate the relative importance that the introduction of those higher-order effects have in the decision of expected utility maximizers using data for the US.
Resumo:
the article explores the putatively non-metaphysical – non-voluntarist, and even non-causal – concept of freedom outlined in Hegel’s work and discusses its influential interpretation by robert Pippin as an ‘essentially practical’ concept. I argue that Hegel’s affirmation of freedom must be distinguished from that of Kant and Fichte, since it does not rely on a prior understanding of self-consciousness as an originally teleological relation and it has not the nature of a claim ‘from a practical point of view’.
Resumo:
A modified UNIFAC–VISCO group contribution method was developed for the correlation and prediction of viscosity of ionic liquids as a function of temperature at 0.1 MPa. In this original approach, cations and anions were regarded as peculiar molecular groups. The significance of this approach comes from the ability to calculate the viscosity of mixtures of ionic liquids as well as pure ionic liquids. Binary interaction parameters for selected cations and anions were determined by fitting the experimental viscosity data available in literature for selected ionic liquids. The temperature dependence on the viscosity of the cations and anions were fitted to a Vogel–Fulcher–Tamman behavior. Binary interaction parameters and VFT type fitting parameters were then used to determine the viscosity of pure and mixtures of ionic liquids with different combinations of cations and anions to ensure the validity of the prediction method. Consequently, the viscosities of binary ionic liquid mixtures were then calculated by using this prediction method. In this work, the viscosity data of pure ionic liquids and of binary mixtures of ionic liquids are successfully calculated from 293.15 K to 363.15 K at 0.1 MPa. All calculated viscosity data showed excellent agreement with experimental data with a relative absolute average deviation lower than 1.7%.
Resumo:
A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.
Resumo:
Interpreters of Robert Nozick’s political philosophy fall into two broad groups concerning his application of the ‘Lockean proviso’. Some read his argument in an undemanding way: individual instances of ownership which make people worse off than they would have been in a world without any ownership are unjust. Others read the argument in a demanding way: individual instances of ownership which make people worse off than they would have been in a world without that particular ownership are unjust. While I argue that the former reading is correct as an interpretive matter, I suggest that this reading is nonetheless highly demanding. In particular, I argue that it is demanding when it is expanded to include the protection of nonhuman animals; if such beings are right bearers, as more and more academics are beginning to suggest, then there is no nonarbitrary reason to exclude them from the protection of the proviso.
Resumo:
Oscillating wave surge converters are a promising technology to harvest ocean wave energy in the near shore region. Although research has been going on for many years, the characteristics of the wave action on the structure and especially the phase relation between the driving force and wave quantities like velocity or surface elevation have not been investigated in detail. The main reason for this is the lack of suitable methods. Experimental investigations using tank tests do not give direct access to overall hydrodynamic loads, only damping torque of a power take off system can be measured directly. Non-linear computational fluid dynamics methods have only recently been applied in the research of this type of devices. This paper presents a new metric named wave torque, which is the total hydrodynamic torque minus the still water pitch stiffness at any given angle of rotation. Changes in characteristics of that metric over a wave cycle and for different power take off settings are investigated using computational fluid dynamics methods. Firstly, it is shown that linearised methods cannot predict optimum damping in typical operating states of OWSCs. We then present phase relationships between main kinetic parameters for different damping levels. Although the flap seems to operate close to resonance, as predicted by linear theory, no obvious condition defining optimum damping is found.
Resumo:
Advocacy has long been described as an inherent part of our role as nurses. Patient vulnerability is cited as a common reason that nurses assume the role of an advocate and no population is more vulnerable than a sick or premature newborn. In this article Diane Chalkright examines the issues surrounding advocacy for patients, and how her previous experience and current knowledge assisted her in challenging medical decisions whilst acting as an effective advocate for a sick baby in her care
Resumo:
The objective of this study was to determine if a high Tg polymer (Eudragit® S100) could be used to stabilize amorphous domains of polyethylene oxide (PEO) and hence improve the stability of binary polymer systems containing celecoxib (CX). We propose a novel method of stabilizing the amorphous PEO solid dispersion through inclusion of a miscible, high Tg polymer, namely, that can form strong inter-polymer interactions. The effects of inter-polymer interactions and miscibility between PEO and Eudragit S100 are considered. Polymer blends were first manufactured via hot-melt extrusion at different PEO/S100 ratios (70/30, 50/50, and 30/70 wt/wt). Differential scanning calorimetry and dynamic mechanical thermal analysis data suggested a good miscibility between PEO and S100 polymer blends, particularly at the 50/50 ratio. To further evaluate the system, CX/PEO/S100 ternary mixtures were extruded. Immediately after hot-melt extrusion, a single Tg that increased with increasing S100 content (anti-plasticization) was observed in all ternary systems. The absence of powder X-ray diffractometry crystalline Bragg’s peaks also suggested amorphization of CX. Upon storage (40°C/75% relative humidity), the formulation containing PEO/S100 at a ratio of 50:50 was shown to be most stable. Fourier transform infrared studies confirmed the presence of hydrogen bonding between Eudragit S100 and PEO suggesting this was the principle reason for stabilization of the amorphous CX/PEO solid dispersion system.
Resumo:
In recent years, nanoscience and nanotechnology has emerged as one of the most important and exciting frontier areas of research interest in almost all fields of science and technology. This technology provides the path of many breakthrough changes in the near future in many areas of advanced technological applications. Nanotechnology is an interdisciplinary area of research and development. The advent of nanotechnology in the modern times and the beginning of its systematic study can be thought of to have begun with a lecture by the famous physicist Richard Feynman. In 1960 he presented a visionary and prophetic lecture at the meeting of the American Physical Society entitled “there is plenty of room at the bottom” where he speculated on the possibility and potential of nanosized materials. Synthesis of nanomaterials and nanostructures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials are possible only when materials are made available with desired size, morphology, crystal structure and chemical composition. Cerium oxide (ceria) is one of the important functional materials with high mechanical strength, thermal stability, excellent optical properties, appreciable oxygen ion conductivity and oxygen storage capacity. Ceria finds a variety of applications in mechanical polishing of microelectronic devices, as catalysts for three-way automatic exhaust systems and as additives in ceramics and phosphors. The doped ceria usually has enhanced catalytic and electrical properties, which depend on a series of factors such as the particle size, the structural characteristics, morphology etc. Ceria based solid solutions have been widely identified as promising electrolytes for intermediate temperature solid oxide fuel cells (SOFC). The success of many promising device technologies depends on the suitable powder synthesis techniques. The challenge for introducing new nanopowder synthesis techniques is to preserve high material quality while attaining the desired composition. The method adopted should give reproducible powder properties, high yield and must be time and energy effective. The use of a variety of new materials in many technological applications has been realized through the use of thin films of these materials. Thus the development of any new material will have good application potential if it can be deposited in thin film form with the same properties. The advantageous properties of thin films include the possibility of tailoring the properties according to film thickness, small mass of the materials involved and high surface to volume ratio. The synthesis of polymer nanocomposites is an integral aspect of polymer nanotechnology. By inserting the nanometric inorganic compounds, the properties of polymers can be improved and this has a lot of applications depending upon the inorganic filler material present in the polymer.
Resumo:
We know that classical thermodynamics even out of equilibrium always leads to stable situation which means degradation and consequently d sorder. Many experimental evidences in different fields show that gradation and order (symmetry breaking) during time and space evolution may appear when maintaining the system far from equilibrium. Order through fluctuations, stochastic processes which occur around critical points and dissipative structures are the fundamental background of the Prigogine-Glansdorff and Nicolis theory. The thermodynamics of macroscopic fluctuations to stochastic approach as well as the kinetic deterministic laws allow a better understanding of the peculiar fascinating behavior of organized matter. The reason for the occurence of this situation is directly related to intrinsic non linearities of the different mechanisms responsible for the evolution of the system. Moreover, when dealing with interfaces separating two immiscible phases (liquid - gas, liquid -liquid, liquid - solid, solid - solid), the situation is rather more complicated. Indeed coupling terms playing the major role in the conditions of instability arise from the peculiar singular static and dynamic properties of the surface and of its vicinity. In other words, the non linearities are not only intrinsic to classical steps involving feedbacks, but they may be imbedded with the non-autonomous character of the surface properties. In order to illustrate our goal we discuss three examples of ordering in far from equilibrium conditions: i) formation of chemical structures during the oxidation of metals and alloys; ii) formation of mechanical structures during the oxidation of metals iii) formation of patterns at a solid-liquid moving interface due to supercooling condition in a melt of alloy. © 1984, Walter de Gruyter. All rights reserved.