981 resultados para Proxy-data
Resumo:
Background Osteoporosis is a common cause of disability and death in elderly men and women. Until 2007, Australian Government-subsidized use of oral bisphosphonates, raloxifene and calcitriol (1α,25-dihydroxycholecalciferol) was limited to secondary prevention (requiring x-ray evidence of previous low-trauma fracture). The cost to the Pharmaceutical Benefits Scheme was substantial (164 million Australian dollars in 2005/6). Objective To examine the dispensed prescriptions for oral bisphosphonates, raloxifene, calcitriol and two calcium products for the secondary prevention of osteoporosis (after previous low-trauma fracture) in the Australian population. Methods We analysed government data on prescriptions for oral bisphosphonates, raloxifene, calcitriol and two calcium products from 1995 to 2006, and by sex and age from 2002 to 2006. Prescription counts were converted to defined daily doses (DDD)/1000 population/day. This standardized drug utilization method used census population data, and adjusts for the effects of aging in the Australian population. Results Total bisphosphonate use increased 460% from 2.19 to 12.26 DDD/1000 population/day between June 2000 and June 2006. The proportion of total bisphosphonate use in June 2006 was 75.1% alendronate, 24.6% risedronate and 0.3% etidronate. Raloxifene use in June 2006 was 1.32 DDD/1000 population/day. The weekly forms of alendronate and risedronate, introduced in 2001 and 2003, respectively, were quickly adopted. Bisphosphonate use peaked at age 80–89 years in females and 85–94 years in males, with 3-fold higher use in females than in males. Conclusions Pharmaceutical intervention for osteoporosis in Australia is increasing with most use in the elderly, the population at greatest risk of fracture. However, fracture prevalence in this population is considerably higher than prescribing of effective anti-osteoporosis medications, representing a missed opportunity for the quality use of medicines.
Resumo:
Twitter ist eine besonders nützliche Quelle für Social-Media-Daten: mit dem Twitter-API (dem Application Programming Interface, das einen strukturierten Zugang zu Kommunikationsdaten in standardisierten Formaten bietet) ist es Forschern möglich, mit ein wenig Mühe und ausreichenden technische Ressourcen sehr große Archive öffentlich verbreiteter Tweets zu bestimmten Themen, Interessenbereichen, oder Veranstaltungen aufzubauen. Grundsätzlich liefert das API sehr langen Listen von Hunderten, Tausenden oder Millionen von Tweets und den Metadaten zu diesen Tweets; diese Daten können dann auf verschiedentlichste Weise extrahiert, kombiniert, und visualisiert werden, um die Dynamik der Social-Media-Kommunikation zu verstehen. Diese Forschung ist häufig um althergebrachte Fragestellungen herum aufgebaut, wird aber in der Regel in einem bislang unbekannt großen Maßstab durchgeführt. Die Projekte von Medien- und Kommunikationswissenschaftlern wie Papacharissi und de Fatima Oliveira (2012), Wood und Baughman (2012) oder Lotan et al. (2011) – um nur eine Handvoll der letzten Beispiele zu nennen – sind grundlegend auf Twitterdatensätze aufgebaut, die jetzt routinemäßig Millionen von Tweets und zugehörigen Metadaten umfassen, erfaßt nach einer Vielzahl von Kriterien. Was allen diesen Fällen gemein ist, ist jedoch die Notwendigkeit, neue methodische Wege in der Verarbeitung und Analyse derart großer Datensätze zur medienvermittelten sozialen Interaktion zu gehen.
Resumo:
Despite the widespread use of ambient ultraviolet radiation (UVR) as a proxy measure of personal exposure to UVR, the relationship between the two is not well-defined. This paper examines the effects of season and latitude on the relationship between ambient UVR and personal UVR exposure. We used data from the AusD Study, a multi-centre cross-sectional study among Australian adults (18-75 years), where personal UVR exposure was objectively measured using polysulphone dosimeters. Data were analysed for 991 participants from 4 Australian cities of different latitude: Townsville (19.3 °S), Brisbane (27.5 °S), Canberra (35.3 °S) and Hobart (42.8 °S). Daily personal UVR exposure varied from 0.01 to 21 Standard Erythemal Doses (median=1.1, IQR: 0.5–2.1), on average accounting for 5% of the total available ambient dose. There was an overall positive correlation between ambient UVR and personal UVR exposure (r=0.23, p<0.001). However, the correlations varied according to season and study location: from strong correlations in winter (r=0.50) and at high latitudes (Hobart, r=0.50; Canberra, r=0.39), to null or even slightly negative correlations, in summer (r=0.01) and at low latitudes (Townsville, r=-0.06; Brisbane, r=-0.16). Multiple regression models showed significant effect modification by season and location. Personal exposure fraction of total available ambient dose was highest in winter (7%) and amongst Hobart participants (7%) and lowest in summer (1%) and in Townsville (4%). These results suggest season and latitude modify the relationship between ambient UVR and personal UVR exposure. Ambient UVR may not be a good indicator for personal exposure dose under some circumstances.
Resumo:
Inhibitory control deficits are well documented in schizophrenia, supported by impairment in an established measure of response inhibition, the stop-signal reaction time (SSRT). We investigated the neural basis of this impairment by comparing schizophrenia patients and controls matched for age, sex and education on behavioural, functional magnetic resonance imaging (fMRI) and event-related potential (ERP) indices of stop-signal task performance. Compared to controls, patients exhibited slower SSRT and reduced right inferior frontal gyrus (rIFG) activation, but rIFG activation correlated with SSRT in both groups. Go stimulus and stop-signal ERP components (N1/P3) were smaller in patients, but the peak latencies of stop-signal N1 and P3 were also delayed in patients, indicating impairment early in stop-signal processing. Additionally, response-locked lateralised readiness potentials indicated response preparation was prolonged in patients. An inability to engage rIFG may predicate slowed inhibition in patients, however multiple spatiotemporal irregularities in the networks underpinning stop-signal task performance may contribute to this deficit.
Resumo:
Scholarly research into the uses of social media has become a major area of growth in recent years, as the adoption of social media for public communication itself has continued apace. While social media platforms provide ready avenues for data access through their Application Programming interfaces, it is increasingly important to think through exactly what these data represent, and what conclusions about the role of social media in society the research which is based on such data therefore enables. This article explores these issues especially for one of the currently leading social media platforms: Twitter.
Resumo:
Analytically or computationally intractable likelihood functions can arise in complex statistical inferential problems making them inaccessible to standard Bayesian inferential methods. Approximate Bayesian computation (ABC) methods address such inferential problems by replacing direct likelihood evaluations with repeated sampling from the model. ABC methods have been predominantly applied to parameter estimation problems and less to model choice problems due to the added difficulty of handling multiple model spaces. The ABC algorithm proposed here addresses model choice problems by extending Fearnhead and Prangle (2012, Journal of the Royal Statistical Society, Series B 74, 1–28) where the posterior mean of the model parameters estimated through regression formed the summary statistics used in the discrepancy measure. An additional stepwise multinomial logistic regression is performed on the model indicator variable in the regression step and the estimated model probabilities are incorporated into the set of summary statistics for model choice purposes. A reversible jump Markov chain Monte Carlo step is also included in the algorithm to increase model diversity for thorough exploration of the model space. This algorithm was applied to a validating example to demonstrate the robustness of the algorithm across a wide range of true model probabilities. Its subsequent use in three pathogen transmission examples of varying complexity illustrates the utility of the algorithm in inferring preference of particular transmission models for the pathogens.
Resumo:
Seeking new biomarkers for epithelial ovarian cancer, the fifth most common cause of death from all cancers in women and the leading cause of death from gynaecological malignancies, we performed a meta-analysis of three independent studies and compared the results in regard to clinicopathological parameters. This analysis revealed that GAS6 was highly expressed in ovarian cancer and therefore was selected as our candidate of choice. GAS6 encodes a secreted protein involved in physiological processes including cell proliferation, chemotaxis, and cell survival. We performed immunohistochemistry on various ovarian cancer tissues and found that GAS6 expression was elevated in tumour tissue samples compared to healthy control samples (P < 0.0001). In addition, GAS6 expression was also higher in tumours from patients with residual disease compared to those without. Our data propose GAS6 as an independent predictor of poor survival, suggesting GAS6, both on the mRNA and on the protein level, as a potential biomarker for ovarian cancer. In clinical practice, the staining of a tumour biopsy for GAS6 may be useful to assess cancer prognosis and/or to monitor disease progression.