937 resultados para Polarized optical microscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We provide new insights into the geochemistry of serpentinites from mid-ocean ridges (Mid-Atlantic Ridge and Hess Deep), passive margins (Iberia Abyssal Plain and Newfoundland) and fore-arcs (Mariana and Guatemala) based on bulk-rock and in situ mineral major and trace element compositional data collected on drill cores from the Deep Sea Drilling Project and Ocean Drilling Program. These data are important for constraining the serpentinite-hosted trace element inventory of subduction zones. Bulk serpentinites show up to several orders of magnitude enrichments in Cl, B, Sr, U, Sb, Pb, Rb, Cs and Li relative to elements of similar compatibility during mantle melting, which correspond to the highest primitive mantle-normalized B/Nb, B/Th, U/Th, Sb/Ce, Sr/Nd and Li/Y among subducted lithologies of the oceanic lithosphere (serpentinites, sediments and altered igneous oceanic crust). Among the elements showing relative enrichment, Cl and B are by far the most abundant with bulk concentrations mostly above 1000 µg/g and 30 µg/g, respectively. All other trace elements showing relative enrichments are generally present in low concentrations (µg/g level), except Sr in carbonate-bearing serpentinites (thousands of µg/g). In situ data indicate that concentrations of Cl, B, Sr, U, Sb, Rb and Cs are, and that of Li can be, increased by serpentinization. These elements are largely hosted in serpentine (lizardite and chrysotile, but not antigorite). Aragonite precipitation leads to significant enrichments in Sr, U and B, whereas calcite is important only as an Sr host. Commonly observed brucite is trace element-poor. The overall enrichment patterns are comparable among serpentinites from mid-ocean ridges, passive margins and fore-arcs, whereas the extents of enrichments are often specific to the geodynamic setting. Variability in relative trace element enrichments within a specific setting (and locality) can be several orders of magnitude. Mid-ocean ridge serpentinites often show pronounced bulk-rock U enrichment in addition to ubiquitous Cl, B and Sr enrichment. They also exhibit positive Eu anomalies on chondrite-normalized rare earth element plots. Passive margin serpentinites tend to have higher overall incompatible trace element contents than mid-ocean ridge and fore-arc serpentinites and show the highest B enrichment among all the studied serpentinites. Fore-arc serpentinites are characterized by low overall trace element contents and show the lowest Cl, but the highest Rb, Cs and Sr enrichments. Based on our data, subducted dehydrating serpentinites are likely to release fluids with high B/Nb, B/Th, U/Th, Sb/Ce and Sr/Nd, rendering them one of the potential sources of some of the characteristic trace element fingerprints of arc magmas (e.g. high B/Nb, high Sr/Nd, high Sb/Ce). However, although serpentinites are a substantial part of global subduction zone chemical cycling, owing to their low overall trace element contents (except for B and Cl) their geochemical imprint on arc magma sources (apart from addition of H2O, B and Cl) can be masked considerably by the trace element signal from subducted crustal components.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During a R.V. Meteor JGOFS-NABE cruise to a tropical site in the northeast Atlantic in spring 1989, three different vertical regimes with respect to nitrate distribution and availability within the euphotic zone were observed. Besides dramatic variations in the depth of the nitracline, a previously undescribed nose-like nitrate maximum within the euphotic zone was the most prominent feature during this study. Both the vertical structure of phytoplankton biomass and the degree of absolute and relative new production were related to the depth of the nitracline, which in turn was dependent on the occurrence/non-occurrence of the subsurface subtropical salinity maximum (Smax). The mesoscale variability of the nitracline depth, as indicated from a pre-survey grid, and published data on the frequent occurrence of the Smax in tropical waters suggest higher variability of new production and F-ratio than usually expected for oligotrophic oceans. The importance of salt fingering and double diffusion for nitrate transport into the euphotic zone is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Feeding activity, selective grazing and the potential grazing impact of two dominant grazers of the Polar Frontal Zone, Calanus simillimus and Rhincalanus gigas, and of copepods < 2 mm were investigated with incubation experiments in the course of an iron fertilized diatom bloom in November 2000. All grazers were already actively feeding in the low chlorophyll waters prior to the onset of the bloom. C. simillimus maintained constant clearance rates and fed predominantly on diatoms. R. gigas and the small copepods strongly increased clearance and ingestion of diatoms in response to their enhanced availability. All grazers preyed on microzooplankton, most steadily on ciliates, confirming the view that pure herbivory appears to be the exception rather than the rule in copepod feeding. The grazers exhibited differences in feeding behavior based on selectivity indices. C. simillimus and R. gigas showed prey switching from dinoflagellates to diatoms in response to the phytoplankton bloom. All grazers most efficiently grazed on large diatoms leading to differences in daily losses for large and small species, e.g. Corethron sp. or Thalassionema nitzschioides. Species-specific diatom mortality rates due to grazing suggest that the high feeding activity of C. simillimus prior to and during the bloom played a role in shaping diatom population dynamics