962 resultados para Plant water relationships


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of cellular water flow is mediated by the aquaporin (AQP) family of membrane proteins. The family's structural features and the mechanism of selective water passage through the AQP pore are established, but there remains a gap in our knowledge of how water transport is regulated. Two broad possibilities exist. One is controlling the passage of water through the AQP pore, but this has only been observed as a phenomenon in some plant and microbial AQPs. An alternative is controlling the number of AQPs in the cell membrane. Here we describe a novel pathway in mammalian cells whereby a hypotonic stimulus directly induces intracellular calcium elevations, through transient receptor potential channels, that trigger AQP1 translocation. This translocation, which has a direct role in cell volume regulation, occurs within 30s and is dependent on calmodulin activation and phosphorylation of AQP1 at two threonine residues by protein kinase C. This direct mechanism provides a rationale for the changes in water transport that are required in response to constantly-changing local cellular water availability. Moreover, since calcium is a pluripotent and ubiquitous second messenger in biological systems, the discovery of its role in the regulation of AQP translocation has ramifications for diverse physiological and pathophysiological processes, as well as providing an explanation for the rapid regulation of water flow that is necessary for cell homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renewable non-edible plant oils such as jatropha and karanj have potential to substitute fossil diesel fuels in CI engines. A multi-cylinder water cooled IDI type CI engine has been tested with jatropha and karanj oils and comparisons made against fossil diesel. The physical and chemical properties of the three fuels were measured to investigate the suitability of jatropha and karanj oils as fuels for CI engines. The engine cooling water circuit and fuel supply systems were modified such that hot jacket water preheated the neat plant oil prior to injection. Between jatropha and karanj there was little difference in the performance, emission and combustion results. Compared to fossil diesel, the brake specific fuel consumption on volume basis was around 3% higher for the plant oils and the brake thermal efficiency was almost similar. Jatropha and karanj operation resulted in higher CO 2 and NO x emissions by 7% and 8% respectively, as compared to diesel. The cylinder gas pressure diagram showed stable engine operation with both plant oils. At full load, the plant oils gave around 3% higher peak cylinder pressure than fossil diesel. With the plant oils, cumulative heat release was smaller at low load and almost similar at full load, compared to diesel. At full load, the plant oils exhibited 5% shorter combustion duration. The study concludes that the IDI type CI engine can be efficiently operated with neat jatropha (or karanj) oil preheated by jacket water, after small modifications of the engine cooling and fuel supply circuits. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents design and construction of a tri-generation system (thermal efficiency, 63%), powered by neat nonedible plant oils (jatropha, pongamia and jojoba oil or standard diesel fuel), besides studies on plant performance and economics. Proposed plant consumes fuel (3 l/h) and produce ice (40 kg/h) by means of an adsorption refrigerator powered from the engine waste jacket water heat. Potential savings in green house gas (GHG) emissions of trigeneration system in comparison to cogeneration (or single generation) has also been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a polygeneration system that can run on neat plant oils, such as Jatropha and Pongamia, or standard diesel fuel. A prototype has been constructed using a compression ignition engine of 9.9 kW shaft output. It consumes 3 L/h of fuel and will produce 40 kg/h of ice by means of an adsorption refrigerator powered from the engine jacket heat. Steaming of rice, deep and shallow frying, and other types of food preparation heated by the exhaust gas have been demonstrated. In addition, the feasibility of producing distilled water by means of multiple-effect distillation powered by the engine waste heat is shown. Overall plant efficiency and potential savings in greenhouse gas emissions are discussed. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background - Emerging evidence supports the view that (AQP) aquaporin water channels are regulators of transcellular water flow. Consistent with their expression in most tissues, AQPs are associated with diverse physiological and pathophysiological processes. Scope of review - AQP knockout studies suggest that the regulatory role of AQPs, rather than their action as passive channels, is their critical function. Transport through all AQPs occurs by a common passive mechanism, but their regulation and cellular distribution varies significantly depending on cell and tissue type; the role of AQPs in cell volume regulation (CVR) is particularly notable. This review examines the regulatory role of AQPs in transcellular water flow, especially in CVR. We focus on key systems of the human body, encompassing processes as diverse as urine concentration in the kidney to clearance of brain oedema. Major conclusions - AQPs are crucial for the regulation of water homeostasis, providing selective pores for the rapid movement of water across diverse cell membranes and playing regulatory roles in CVR. Gating mechanisms have been proposed for human AQPs, but have only been reported for plant and microbial AQPs. Consequently, it is likely that the distribution and abundance of AQPs in a particular membrane is the determinant of membrane water permeability and a regulator of transcellular water flow. General significance - Elucidating the mechanisms that regulate transcellular water flow will improve our understanding of the human body in health and disease. The central role of specific AQPs in regulating water homeostasis will provide routes to a range of novel therapies. This article is part of a Special Issue entitled Aquaporins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peptides are of great therapeutic potential as vaccines and drugs. Knowledge of physicochemical descriptors, including the partition coefficient P (commonly expressed in logarithm form: logP), is useful for screening out unsuitable molecules and also for the development of predictive Quantitative Structure-Activity Relationships (QSARs). In this paper we develop a new approach to the prediction of LogP values for peptides based on an empirical relationship between global molecular properties and measured physical properties. Our method was successful in terms of peptide prediction (total r2 = 0.641). The final model consisted of 5 physicochemical descriptors (molecular weight, number of single bonds, 2D-VDW volume, 2D-VSA hydrophobic and 2D-VSA polar). The approach is peptide specific and its predictive accuracy was high. Overall, 67% of the peptides were able to be predicted within +/-0.5 log units from the experimental values. Our method thus represents a novel prediction method with proven predictive ability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grape juice composition during the different stages of berry growth was compared. The analytical data collected were used to investigate the relationships between some of the different components studied in these berries during the ripening period. Our goal is to study, with neural networks, the impact of water availability on Vitis vinifera L. cv. Tempranillo grape yields and juice composition over a three-year period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desalination is a costly means of providing freshwater. Most desalination plants use either reverse osmosis (RO) or thermal distillation. Both processes have drawbacks: RO is efficient but uses expensive electrical energy; thermal distillation is inefficient but uses less expensive thermal energy. This work aims to provide an efficient RO plant that uses thermal energy. A steam-Rankine cycle has been designed to drive mechanically a batch-RO system that achieves high recovery, without the high energy penalty typically incurred in a continuous-RO system. The steam may be generated by solar panels, biomass boilers, or as an industrial by-product. A novel mechanical arrangement has been designed for low cost, and a steam-jacketed arrangement has been designed for isothermal expansion and improved thermodynamic efficiency. Based on detailed heat transfer and cost calculations, a gain output ratio of 69-162 is predicted, enabling water to be treated at a cost of 71 Indian Rupees/m3 at small scale. Costs will reduce with scale-up. Plants may be designed for a wide range of outputs, from 5 m3/day, up to commercial versions producing 300 m3/day of clean water from brackish groundwater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is one of the biggest environmental problems of the 21st century. The most sensitive indicators of the effects of the climatic changes are phenological processes of the biota. The effects of climate change which were observed the earliest are the remarkable changes in the phenology (i.e. the timing of the phenophases) of the plants and animals, which have been systematically monitored later. In our research we searched for the answer: which meteorological factors show the strongest statistical relationships with phenological phenomena based on some chosen plant and insect species (in case of which large phenological databases are available). Our study was based on two large databases: one of them is the Lepidoptera database of the Hungarian Plant Protection and Forestry Light Trap Network, the other one is the Geophytes Phenology Database of the Botanical Garden of Eötvös Loránd University. In the case of butterflies, statistically defined phenological dates were determined based on the daily collection data, while in the case of plants, observation data on blooming were available. The same meteorological indicators were applied for both groups in our study. On the basis of the data series, analyses of correlation were carried out and a new indicator, the so-called G index was introduced, summing up the number of correlations which were found to be significant on the different levels of significance. In our present study we compare the significant meteorological factors and analyse the differences based on the correlation data on plants and butterflies. Data on butterflies are much more varied regarding the effectiveness of the meteorological factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diminishing cultural and biological diversity is a current global crisis. Tropical forests and indigenous peoples are adversely affected by social and environmental changes caused by global political and economic systems. The purpose of this thesis was to investigate environmental and livelihood challenges as well as medicinal plant knowledge in a Yagua village in the Peruvian Amazon. Indigenous peoples’ relationships with the environment is an important topic in environmental anthropology, and traditional botanical knowledge is an integral component of ethnobotany. Political ecology provides a useful theoretical perspective for understanding the economic and political dimensions of environmental and social conditions. This research utilized a variety of ethnographic, ethnobotanical, and community-involved methods. Findings include data and analyses about the community’s culture, subsistence and natural resource needs, organizations and institutions, and medicinal plant use. The conclusion discusses the case study in terms of the disciplinary framework and offers suggestions for research and application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arctic soils store close to 14% of the global soil carbon. Most of arctic carbon is stored below ground in the permafrost. With climate warming the decomposition of the soil carbon could represent a significant positive feedback to global greenhouse warming. Recent evidence has shown that the temperature of the Arctic is already increasing, and this change is associated mostly with anthropogenic activities. Warmer soils will contribute to permafrost degradation and accelerate organic matter decay and thus increase the flux of carbon dioxide and methane into the atmosphere. Temperature and water availability are also important drivers of ecosystem performance, but effects can be complex and in opposition. Temperature and moisture changes can affect ecosystem respiration (ER) and gross primary productivity (GPP) independently; an increase in the net ecosystem exchange can be a result of either a decrease in ER or an increase in GPP. Therefore, understanding the effects of changes in ecosystem water and temperature on the carbon flux components becomes key to predicting the responses of the Arctic to climate change. The overall goal of this work was to determine the response of arctic systems to simulated climate change scenarios with simultaneous changes in temperature and moisture. A temperature and hydrological manipulation in a naturally-drained lakebed was used to assess the short-term effect of changes in water and temperature on the carbon cycle. Also, as part of International Tundra Experiment Network (ITEX), I determined the long-term effect of warming on the carbon cycle in a natural hydrological gradient established in the mid 90's. I found that the carbon balance is highly sensitive to short-term changes in water table and warming. However, over longer time periods, hydrological and temperature changed soil biophysical properties, nutrient cycles, and other ecosystem structural and functional components that down regulated GPP and ER, especially in wet areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 Oxygen and sulphide dynamics were examined, using microelectrode techniques, in meristems and rhizomes of the seagrass Thalassia testudinum at three different sites in Florida Bay, and in the laboratory, to evaluate the potential role of internal oxygen variability and sulphide invasion in episodes of sudden die-off. The sites differed with respect to shoot density and sediment composition, with an active die-off occurring at only one of the sites. 2 Meristematic oxygen content followed similar diel patterns at all sites with high oxygen content during the day and hyposaturation relative to the water column during the night. Minimum meristematic oxygen content was recorded around sunrise and varied among sites, with values close to zero at the die-off site. 3 Gaseous sulphide was detected within the sediment at all sites but at different concentrations among sites and within the die-off site. Spontaneous invasion of sulphide into Thalassia rhizomes was recorded at low internal oxygen partial pressure during darkness at the die-off site. 4 A laboratory experiment showed that the internal oxygen dynamics depended on light availability, and hence plant photosynthesis, and on the oxygen content of the water column controlling passive oxygen diffusion from water column to leaves and belowground tissues in the dark. 5 Sulphide invasion only occurred at low internal oxygen content, and the rate of invasion was highly dependent on the oxygen supply to roots and rhizomes. Sulphide was slowly depleted from the tissues when high oxygen partial pressures were re-established through leaf photosynthesis. Coexistence of sulphide and oxygen in the tissues and the slow rate of sulphide depletion suggest that sulphide reoxidation is not biologically mediated within the tissues of Thalassia. 6 Our results support the hypothesis that internal oxygen stress, caused by low water column oxygen content or poor plant performance governed by other environmental factors, allows invasion of sulphide and that the internal plant oxygen and sulphide dynamics potentially are key factors in the episodes of sudden die-off in beds of Thalassia testudinum . Root anoxia followed by sulphide invasion may be a more general mechanism determining the growth and survival of other rooted plants in sulphate-rich aquatic environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study documents relationships between plant nutrient content and rhizome carbohydrate content of a widely distributed seagrass species, Thalassia testudinum, in Florida. Five distinct seagrass beds were sampled for leaf nitrogen, leaf phosphorus, and rhizome carbohydrate content from 1997 to 1999. All variables displayed marked intra- and inter- regional variation. Elemental ratios (mean N:P ± S.E.) were lowest for Charlotte Harbor (9.9 ± 0.2) and highest for Florida Bay (53.5 ± 0.9), indicating regional shifts in the nutrient content of plant material. Rhizome carbohydrate content (mean ± S.E.) was lowest for Anclote Keys (21.8 ± 1.6 mg g−1 FM), and highest for Homosassa Bay (40.7 ± 1.7 mg g−1 FM). Within each region, significant negative correlations between plant nutrient and rhizome carbohydrate content were detected; thus, nutrient-replete plants displayed low carbohydrate content, while nutrient-deplete plants displayed high carbohydrate content. Spearman's rank correlations between nutrient and carbohydrate content varied from a minimum in Tampa Bay (ρ = −0.2) to a maximum in Charlotte Harbor (ρ = −0.73). Linear regressions on log-transformed data revealed similar trends. This consistent trend across five distinct regions suggests that nutrient supply may play an important role in the regulation of carbon storage within seagrasses. Here we present a new hypothesis for studies which aim to explain the carbohydrate dynamics of benthic plants.