Empirical prediction of peptide octanol-water partition coefficients
Data(s) |
2006
|
---|---|
Resumo |
Peptides are of great therapeutic potential as vaccines and drugs. Knowledge of physicochemical descriptors, including the partition coefficient P (commonly expressed in logarithm form: logP), is useful for screening out unsuitable molecules and also for the development of predictive Quantitative Structure-Activity Relationships (QSARs). In this paper we develop a new approach to the prediction of LogP values for peptides based on an empirical relationship between global molecular properties and measured physical properties. Our method was successful in terms of peptide prediction (total r2 = 0.641). The final model consisted of 5 physicochemical descriptors (molecular weight, number of single bonds, 2D-VDW volume, 2D-VSA hydrophobic and 2D-VSA polar). The approach is peptide specific and its predictive accuracy was high. Overall, 67% of the peptides were able to be predicted within +/-0.5 log units from the experimental values. Our method thus represents a novel prediction method with proven predictive ability. |
Formato |
application/pdf |
Identificador |
Hattotuwagama, Channa K. and Flower, Darren R. (2006). Empirical prediction of peptide octanol-water partition coefficients. Bioinformation, 1 (7), pp. 257-259. |
Relação |
http://eprints.aston.ac.uk/23156/ |
Tipo |
Article PeerReviewed |