937 resultados para Peak Expiratory Flow Rate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to analyze the capacity of a helical coil heat exchanger to reach the requested heat transfer rates by a sodium hypochlorite production process. This heat exchanger was installed in an experimental way in order to reuse a source of low-temperatures water in such a way to become a more economical alternative than the existing cooling tower. Firstly, the concepts related to the theory of heat transfer applicable to the case were introduced. Then, the mapping of the main information about the production process and the technical specification of the current cooling system equipment's was realized. Using the dimensions of the heat exchanger installed today as reference, the calculations for determining the ideal length of the coil to different flows of hot fluid were performed. Finally, it was concluded that the heat exchanger currently employed does not provide heat transfer rates required for the maximum flow rate value supported by the cooling tower

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Proteção de Plantas) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INVESTIGATION INTO CURRENT EFFICIENCY FOR PULSE ELECTROCHEMICAL MACHINING OF NICKEL ALLOY Yu Zhang, M.S. University of Nebraska, 2010 Adviser: Kamlakar P. Rajurkar Electrochemical machining (ECM) is a nontraditional manufacturing process that can machine difficult-to-cut materials. In ECM, material is removed by controlled electrochemical dissolution of an anodic workpiece in an electrochemical cell. ECM has extensive applications in automotive, petroleum, aerospace, textile, medical, and electronics industries. Improving current efficiency is a challenging task for any electro-physical or electrochemical machining processes. The current efficiency is defined as the ratio of the observed amount of metal dissolved to the theoretical amount predicted from Faraday’s law, for the same specified conditions of electrochemical equivalent, current, etc [1]. In macro ECM, electrolyte conductivity greatly influences the current efficiency of the process. Since there is a certain limit to enhance the conductivity of the electrolyte, a process innovation is needed for further improvement in current efficiency in ECM. Pulse electrochemical machining (PECM) is one such approach in which the electrolyte conductivity is improved by electrolyte flushing in pulse off-time. The aim of this research is to study the influence of major factors on current efficiency in a pulse electrochemical machining process in macro scale and to develop a linear regression model for predicting current efficiency of the process. An in-house designed electrochemical cell was used for machining nickel alloy (ASTM B435) by PECM. The effects of current density, type of electrolyte, and electrolyte flow rate, on current efficiency under different experimental conditions were studied. Results indicated that current efficiency is dependent on electrolyte, electrolyte flow rate, and current density. Linear regression models of current efficiency were compared with twenty new data points graphically and quantitatively. Models developed were close enough to the actual results to be reliable. In addition, an attempt has been made in this work to consider those factors in PECM that have not been investigated in earlier works. This was done by simulating the process by using COMSOL software. However, it was found that the results from this attempt were not substantially different from the earlier reported studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to analyze the capacity of a helical coil heat exchanger to reach the requested heat transfer rates by a sodium hypochlorite production process. This heat exchanger was installed in an experimental way in order to reuse a source of low-temperatures water in such a way to become a more economical alternative than the existing cooling tower. Firstly, the concepts related to the theory of heat transfer applicable to the case were introduced. Then, the mapping of the main information about the production process and the technical specification of the current cooling system equipment's was realized. Using the dimensions of the heat exchanger installed today as reference, the calculations for determining the ideal length of the coil to different flows of hot fluid were performed. Finally, it was concluded that the heat exchanger currently employed does not provide heat transfer rates required for the maximum flow rate value supported by the cooling tower

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Proteção de Plantas) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to determine whether dental calculus formation is really higher among patients with chronic kidney disease undergoing hemodialysis than among controls. Furthermore, the study evaluated correlations between dental calculus formation and dental plaque, variables that are related to renal disease and/or saliva composition. The Renal Group was composed of 30 patients undergoing hemodialysis, whereas the Healthy Group had 30 clinically healthy patients. Stimulated whole saliva and parotid saliva were collected. Salivary flow rate and calcium and phosphate concentrations were determined. In the Renal Group the saliva collection was carried out before and after a hemodialysis session. Patients from both groups received intraoral exams, oral hygiene instructions, and dental scaling. Three months later, the dental calculus was measured by the Volpe-Manhold method to determine the rate of dental calculus formation. The Renal Group presented a higher rate of dental calculus formation (p < 0.01). Correlation was observed between rate of dental calculus formation and whole saliva flow rate in the Renal Group after a hemodialysis session (r = 0.44, p < 0.05). The presence of dental calculus was associated with phosphate concentration in whole saliva from the Renal Group (p < 0.05). In conclusion, patients undergoing hemodialysis presented accelerated dental calculus formation, probably due to salivary variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Fed-batch culture allows the cultivation of Arthrospira platensis using urea as nitrogen source. Tubular photobioreactors substantially increase cell growth, but the successful use of this cheap nitrogen source requires a knowledge of the kinetic and thermodynamic parameters of the process. This work aims at identifying the effect of two independent variables, temperature (T) and urea daily molar flow-rate (U), on cell growth, biomass composition and thermodynamic parameters involved in this photosynthetic cultivation. RESULTS: The optimal values obtained were T = 32 degrees C and U = 1.16 mmol L-1 d-1, under which the maximum cell concentration was 4186 +/- 39 mg L-1, cell productivity 541 +/- 5 mg L-1 d-1 and yield of biomass on nitrogen 14.3 +/- 0.1 mg mg-1. Applying an Arrhenius-type approach, the thermodynamic parameters of growth (?H* = 98.2 kJ mol-1; ?S* = - 0.020 kJ mol-1 K-1; ?G* = 104.1 kJ mol-1) and its thermal inactivation (Delta H-D(0) =168.9 kJ mol-1; Delta S-D(0) = 0.459 kJ mol-1 K-1; Delta G(D)(0) =31.98 kJ mol-1) were estimated. CONCLUSIONS: To maximize cell growth T and U were simultaneously optimized. Biomass lipid content was not influenced by the experimental conditions, while protein content was dependent on both independent variables. Using urea as nitrogen source prevented the inhibitory effect already observed with ammonium salts. Copyright (c) 2012 Society of Chemical Industry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and sensitive analytical method for simultaneous determination of anastrozole, bicalutamide, and tamoxifen as well as their synthetic impurities, anastrozole pentamethyl, bicalutamide 3-fluoro-isomer, and tamoxifen e-isomer, was developed and validated by using high performance liquid chromatography (HPLC). The separation was achieved on a Symmetry (R) C-8 column (100 x 4.6 mm i.d., 3.5 mu m) at room temperature (+/- 24 degrees C), with a mobile phase consisting of acetonitrile/water containing 0.18% N,N dimethyloctylamine and pH adjusted to 3.0 with orthophosphoric acid (46.5/53.5, v/v) at a flow rate of 1.0 mL min(-1) within 20 min. The detection was made at a wavelength of 270 nm by using ultraviolet (UV) detector. No interference peaks from excipients and relative retention time indicated the specificity of the method. The calibration curve showed correlation coefficients (r) > 0.99 calculated by linear regression and analysis of variance (ANOVA). The limit of detection (LOD) and limit of quantitation (LOQ), respectively, were 2.2 and 6.7 mu g mL(-1) for anastrozole, 2.61 and 8.72 mu g mL(-1) for bicalutamide, 2.0 and 6.7 mu g mL(-1) for tamoxifen, 0.06 and 0.22 mu g mL(-1) for anastrozole pentamethyl, 0.02 and 0.07 mu g mL(-1) for bicalutamide 3-fluoro-isomer, and 0.002 and 0.007 mu g mL(-1) for tamoxifen e-isomer. Intraday and interday relative standard deviations (RSDs) were <2.0% (drugs) and <10% (degradation products) as well as the comparison between two different analysts, which were calculated by f test. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subsurface drip irrigation that uses an emitter protection system to avoid its clogging by roots and soil particles may be viable compared to a conventional system. The objective of this work was to evaluate the performance of a system with emitter protection, and to compare the results with a system that uses a conventional emitter for subsurface drip irrigation. In the system with protection an inexpensive materials polyethylene hose, microtube, connector, and a dripper to control the flow rate were used; and, in the conventional system a commercial emitter was used. After 12 months of evaluation, the system with protector showed good performance, with relative average flow rate of 0.97 and 0.98 in pots with and without crop, respectively, showing no clogging problems and lower cost. In conventional system relative flow rate of 0.51 and 0.98 were observed in pots with and without crop, respectively, also clogging degree by roots of 49.22%, and emitters with soil inside was observed. Thus, the use of emitter with protection presented feasibility for subsurface drip irrigation, under conditions used in this research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, a fast, sensitive and robust method to quantify dextromethorphan, dextrorphan and doxylamine in human plasma using deuterated internal standards (IS) is described. The analytes and the IS were extracted from plasma by a liquid-liquid extraction (LLE) using diethyl-ether/hexane (80/20, v/v). Extracted samples were analyzed by high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Chromatographic separation was performed by pumping the mobile phase (acetonitrile/water/formic acid (90/9/1, v/v/v) during 4.0 min at a flow-rate of 1.5 mL min(-1) into a Phenomenex Gemini (R) C18, 5 mu m analytical column (150 x 4.6 mm id.). The calibration curve was linear over the range from 0.2 to 200 ng mL(-1) for dextromethorphan and doxylamine and 0.05 to 10 ng mL(-1) for dextrorphan. The intra-batch precision and accuracy (%CV) of the method ranged from 2.5 to 9.5%, and 88.9 to 105.1%, respectively. Method inter-batch precision (%CV) and accuracy ranged from 6.7 to 10.3%, and 92.2 to 107.1%, respectively. The run-time was for 4 min. The analytical procedure herein described was used to assess the pharmacokinetics of dextromethorphan, dextrorphan and doxylamine in healthy volunteers after a single oral dose of a formulation containing 30 mg of dextromethorphan hydrobromide and 12.5 mg of doxylamine succinate. The method has high sensitivity, specificity and allows high throughput analysis required for a pharmacokinetic study. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive, selective, and reproducible in-tube solid-phase microextraction and liquid chromatographic (in-tube SPME/LC-UV) method for determination of lidocaine and its metabolite monoethylglycinexylidide (MEGX) in human plasma has been developed, validated, and further applied to pharmacokinetic study in pregnant women with gestational diabetes mellitus (GDM) subjected to epidural anesthesia. Important factors in the optimization of in-tube SPME performance are discussed, including the draw/eject sample volume, draw/eject cycle number, draw/eject flow rate, sample pH, and influence of plasma proteins. The limits of quantification of the in-tube SPME/LC method were 50 ng/mL for both metabolite and lidocaine. The interday and intraday precision had coefficients of variation lower than 8%, and accuracy ranged from 95 to 117%. The response of the in-tube SPME/LC method for analytes was linear over a dynamic range from 50 to 5000 ng/mL, with correlation coefficients higher than 0.9976. The developed in-tube SPME/LC method was successfully used to analyze lidocaine and its metabolite in plasma samples from pregnant women with GDM subjected to epidural anesthesia for pharmacokinetic study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-performance liquid chromatographic method using polar organic mode was developed to analyze albendazole (ABZ), albendazole sulfone (ABZSO(2)) and the chiral and active metabolite albendazole sulfoxide (ABZSOX, ricobendazole) that was further applied in stereoselective fungal biotransformation studies. The chromatographic separation was performed on a Chiralpak AS column using acetonitrile:ethanol (97:3, v/v) plus 0.2% triethylamine and 0.2% acetic acid as the mobile phase at a flow rate of 0.5 mL min(-1). The present study employed hollow fiber liquid-phase microextraction as sample preparation. The method showed to be linear over the concentration range of 25-5000 ng mL(-1) for each ABZSOX enantiomer, 200-10,000 ng mL(-1) for ABZ and 50-1000 ng mL(-1) for ABZSO(2) metabolite with correlation coefficient (r)> 0.9934. The mean recoveries for ABZ, rac-ABZSOX and ABZSO(2) were, respectively, 9%, 33% and 20% with relative standard deviation below 10%. Within-day and between-day precision and accuracy assays for these analytes were studied at three concentration levels and were lower than 15%. This study opens the door regarding the possibility of using fungi in obtaining of the active metabolite ricobendazole. Nigrospora sphaerica (Sacc.) E. W. Mason (5567), Pestalotiopsis foedans (VR8), Papulaspora immersa Hotson (SS13) and Mucor rouxii were able to stereoselectively metabolize ABZ into its chiral metabolite. Among them, the fungus Mucor rouxii was the most efficient in the production of (+)-ABZSOX. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Baldi JV, Bernardes RA, Duarte MAH, Ordinola-Zapata R, Cavenago BC, Moraes JCS, de Moraes IG. Variability of physicochemical properties of an epoxy resin sealer taken from different parts of the same tube. International Endodontic Journal,similar to 45, 915920, 2012. Abstract Aim To analyse several physicochemical properties of AH Plus (Dentsply DeTrey, Konstanz, Germany), including setting time, flow, radiopacity and the degree of conversion (DC); and to correlate the results with the source of the material: from the beginning, middle or end of the tubes in which they were supplied. Methodology Three experimental groups were established for each property investigated. Group 1 corresponded to material taken from the beginning of tubes A and B; Group 2 corresponded to material taken from the middle of each tube; and group 3 corresponded to that from the end of each tube. The setting time, flow and radiopacity were studied according to American National Standards Institute/American Dental Association (ANSI/ADA) Specification 57. DC was determined from infrared spectra, which were recorded at 1-h intervals for the first 6 h; then, at 2-h intervals for the next 14 h; then, at 24 and 30 h. Data were analysed statistically by analysis of variance (anova), TukeyKramer, KruskalWallis and Dunn tests, with a significance level of 5%. Results Group 1 had a significantly longer setting time (2303 +/- 1058 min) (P < 0.05). Group 3 had the lowest flowability (30.0 +/- 0.7 mm) and the highest radiopacity (14.85 +/- 1.8 mm Al) (P < 0.05). No differences were found for the DC test (P > 0.05). Conclusion The results suggest that segregation occurs between the organic and inorganic components of AH Plus sealer, thereby changing the setting time, flow and radiopacity.