991 resultados para PH measurement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypervelocity impact of meteoroids and orbital debris poses a serious and growing threat to spacecraft. To study hypervelocity impact phenomena, a comprehensive ensemble of real-time concurrently operated diagnostics has been developed and implemented in the Small Particle Hypervelocity Impact Range (SPHIR) facility. This suite of simultaneously operated instrumentation provides multiple complementary measurements that facilitate the characterization of many impact phenomena in a single experiment. The investigation of hypervelocity impact phenomena described in this work focuses on normal impacts of 1.8 mm nylon 6/6 cylinder projectiles and variable thickness aluminum targets. The SPHIR facility two-stage light-gas gun is capable of routinely launching 5.5 mg nylon impactors to speeds of 5 to 7 km/s. Refinement of legacy SPHIR operation procedures and the investigation of first-stage pressure have improved the velocity performance of the facility, resulting in an increase in average impact velocity of at least 0.57 km/s. Results for the perforation area indicate the considered range of target thicknesses represent multiple regimes describing the non-monotonic scaling of target perforation with decreasing target thickness. The laser side-lighting (LSL) system has been developed to provide ultra-high-speed shadowgraph images of the impact event. This novel optical technique is demonstrated to characterize the propagation velocity and two-dimensional optical density of impact-generated debris clouds. Additionally, a debris capture system is located behind the target during every experiment to provide complementary information regarding the trajectory distribution and penetration depth of individual debris particles. The utilization of a coherent, collimated illumination source in the LSL system facilitates the simultaneous measurement of impact phenomena with near-IR and UV-vis spectrograph systems. Comparison of LSL images to concurrent IR results indicates two distinctly different phenomena. A high-speed, pressure-dependent IR-emitting cloud is observed in experiments to expand at velocities much higher than the debris and ejecta phenomena observed using the LSL system. In double-plate target configurations, this phenomena is observed to interact with the rear-wall several micro-seconds before the subsequent arrival of the debris cloud. Additionally, dimensional analysis presented by Whitham for blast waves is shown to describe the pressure-dependent radial expansion of the observed IR-emitting phenomena. Although this work focuses on a single hypervelocity impact configuration, the diagnostic capabilities and techniques described can be used with a wide variety of impactors, materials, and geometries to investigate any number of engineering and scientific problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A central objective in signal processing is to infer meaningful information from a set of measurements or data. While most signal models have an overdetermined structure (the number of unknowns less than the number of equations), traditionally very few statistical estimation problems have considered a data model which is underdetermined (number of unknowns more than the number of equations). However, in recent times, an explosion of theoretical and computational methods have been developed primarily to study underdetermined systems by imposing sparsity on the unknown variables. This is motivated by the observation that inspite of the huge volume of data that arises in sensor networks, genomics, imaging, particle physics, web search etc., their information content is often much smaller compared to the number of raw measurements. This has given rise to the possibility of reducing the number of measurements by down sampling the data, which automatically gives rise to underdetermined systems.

In this thesis, we provide new directions for estimation in an underdetermined system, both for a class of parameter estimation problems and also for the problem of sparse recovery in compressive sensing. There are two main contributions of the thesis: design of new sampling and statistical estimation algorithms for array processing, and development of improved guarantees for sparse reconstruction by introducing a statistical framework to the recovery problem.

We consider underdetermined observation models in array processing where the number of unknown sources simultaneously received by the array can be considerably larger than the number of physical sensors. We study new sparse spatial sampling schemes (array geometries) as well as propose new recovery algorithms that can exploit priors on the unknown signals and unambiguously identify all the sources. The proposed sampling structure is generic enough to be extended to multiple dimensions as well as to exploit different kinds of priors in the model such as correlation, higher order moments, etc.

Recognizing the role of correlation priors and suitable sampling schemes for underdetermined estimation in array processing, we introduce a correlation aware framework for recovering sparse support in compressive sensing. We show that it is possible to strictly increase the size of the recoverable sparse support using this framework provided the measurement matrix is suitably designed. The proposed nested and coprime arrays are shown to be appropriate candidates in this regard. We also provide new guarantees for convex and greedy formulations of the support recovery problem and demonstrate that it is possible to strictly improve upon existing guarantees.

This new paradigm of underdetermined estimation that explicitly establishes the fundamental interplay between sampling, statistical priors and the underlying sparsity, leads to exciting future research directions in a variety of application areas, and also gives rise to new questions that can lead to stand-alone theoretical results in their own right.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel scheme to eliminate the artificial background phase jitter is proposed for measuring the carrier-envelope phase drift of tunable infrared femtosecond pulses from an OPA laser. Different from previous methods, a reference spectral interference measurement is performed, which reveals the artificial phase jitter in the measurement process, in addition to the normal f-to-2f interference measurement between the incident laser pulses and it second harmonic. By analyzing the interference fringes, the accurate CEP fluctuation of the incident pulses is obtained. (c) 2008 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, I apply detailed waveform modeling to study noise correlations in different environments, and earthquake waveforms for source parameters and velocity structure.

Green's functions from ambient noise correlations have primarily been used for travel-time measurement. In Part I of this thesis, by detailed waveform modeling of noise correlation functions, I retrieve both surface waves and crustal body waves from noise, and use them in improving earthquake centroid locations and regional crustal structures. I also present examples in which the noise correlations do not yield Green's functions, yet the results are still interesting and useful after case-by-case analyses, including non-uniform distribution of noise sources, spurious velocity changes, and noise correlations on the Amery Ice Shelf.

In Part II of this thesis, I study teleseismic body waves of earthquakes for source parameters or near-source structure. With the dense modern global network and improved methodologies, I obtain high-resolution earthquake locations, focal mechanisms and rupture processes, which provide critical insights to earthquake faulting processes in shallow and deep parts of subduction zones. Waveform modeling of relatively simple subduction zone events also displays new constraints on the structure of subducted slabs.

In summary, behind my approaches to the relatively independent problems, the philosophy is to bring observational insights from seismic waveforms in critical and simple ways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the 160th research cruise of the FRV "Walther Herwig III" in the North Sea in May 1995 an ice-storage experiment with whiting was performed. Gutted whiting with and without spleen was stored in melting water-ice. Freshness and/or spoilage were monitored by measuring sensory, chemical, physical and microbiological indicators. It was found that besides the classical sensory assessment on the cooked sample and the EU-quality grading scheme, the microbiological counts were of major importance for the determination of the degree of freshness or spoilage. The cfu (colony forming units) of spoilage bacteria on the skin correlated significantly with time in ice. A very good correlation was also found for the cfu of spoilage bacteria with the sensory assessed odour of the cooked fillet sample. The measurement of the fish tissue with the Intellectron Fischtester VI and the determination of the creatine content in fillet are both suitable freshness and spoilage indicators. The pH-value measured in different body compartments and in musele homogenate and the ammonia content are only of limited value for freshness determination. Removal of kidney did not influence the shelf life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy loss of protons and deuterons in D_2O ice has been measured over the energy range, E_p 18 - 541 kev. The double focusing magnetic spectrometer was used to measure the energy of the particles after they had traversed a known thickness of the ice target. One method of measurement is used to determine relative values of the stopping cross section as a function of energy; another method measures absolute values. The results are in very good agreement with the values calculated from Bethe’s semi-empirical formula. Possible sources of error are considered and the accuracy of the measurements is estimated to be ± 4%.

The D(dp)H^3 cross section has been measured by two methods. For E_D = 200 - 500 kev the spectrometer was used to obtain the momentum spectrum of the protons and tritons. From the yield and stopping cross section the reaction cross section at 90° has been obtained.

For E_D = 35 – 550 kev the proton yield from a thick target was differentiated to obtain the cross section. Both thin and thick target methods were used to measure the yield at each of ten angles. The angular distribution is expressed in terms of a Legendre polynomial expansion. The various sources of experimental error are considered in detail, and the probable error of the cross section measurements is estimated to be ± 5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Bayesian probabilistic methodology for on-line structural health monitoring which addresses the issue of parameter uncertainty inherent in problem is presented. The method uses modal parameters for a limited number of modes identified from measurements taken at a restricted number of degrees of freedom of a structure as the measured structural data. The application presented uses a linear structural model whose stiffness matrix is parameterized to develop a class of possible models. Within the Bayesian framework, a joint probability density function (PDF) for the model stiffness parameters given the measured modal data is determined. Using this PDF, the marginal PDF of the stiffness parameter for each substructure given the data can be calculated.

Monitoring the health of a structure using these marginal PDFs involves two steps. First, the marginal PDF for each model parameter given modal data from the undamaged structure is found. The structure is then periodically monitored and updated marginal PDFs are determined. A measure of the difference between the calibrated and current marginal PDFs is used as a means to characterize the health of the structure. A procedure for interpreting the measure for use by an expert system in on-line monitoring is also introduced.

The probabilistic framework is developed in order to address the model parameter uncertainty issue inherent in the health monitoring problem. To illustrate this issue, consider a very simplified deterministic structural health monitoring method. In such an approach, the model parameters which minimize an error measure between the measured and model modal values would be used as the "best" model of the structure. Changes between the model parameters identified using modal data from the undamaged structure and subsequent modal data would be used to find the existence, location and degree of damage. Due to measurement noise, limited modal information, and model error, the "best" model parameters might vary from one modal dataset to the next without any damage present in the structure. Thus, difficulties would arise in separating normal variations in the identified model parameters based on limitations of the identification method and variations due to true change in the structure. The Bayesian framework described in this work provides a means to handle this parametric uncertainty.

The probabilistic health monitoring method is applied to simulated data and laboratory data. The results of these tests are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new dye, 2,7-bis(4-methoxystyryl)-9,9-bis(2-ethylhexyl)-9H-fluorene, has been synthesized, which is a D-pi-D symmetrical-type fluorene derivative. The two-photon absorption (TPA) of this new dye has been experimentally studied by comparable two-photon-induced fluorescence method. This new dye has a TPA cross-section of 84 x 10(-50) cm(4) s/photon at 790 nm/13 fs. (c) 2004 Elsevier GmbH. All rights reserved.