939 resultados para PERSISTENT ASTHMA
Resumo:
The persistent nature of addiction has been associated with activity-induced plasticity of neurons within the striatum and nucleus accumbens (NAc). To identify the molecular processes leading to these adaptations, we performed Cre/loxP-mediated genetic ablations of two key regulators of gene expression in response to activity, the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) and its postulated main target, the cAMP-responsive element binding protein (CREB). We found that acute cocaine-induced gene expression in the striatum was largely unaffected by the loss of CaMKIV. On the behavioral level, mice lacking CaMKIV in dopaminoceptive neurons displayed increased sensitivity to cocaine as evidenced by augmented expression of locomotor sensitization and enhanced conditioned place preference and reinstatement after extinction. However, the loss of CREB in the forebrain had no effect on either of these behaviors, even though it robustly blunted acute cocaine-induced transcription. To test the relevance of these observations for addiction in humans, we performed an association study of CAMK4 and CREB promoter polymorphisms with cocaine addiction in a large sample of addicts. We found that a single nucleotide polymorphism in the CAMK4 promoter was significantly associated with cocaine addiction, whereas variations in the CREB promoter regions did not correlate with drug abuse. These findings reveal a critical role for CaMKIV in the development and persistence of cocaine-induced behaviors, through mechanisms dissociated from acute effects on gene expression and CREB-dependent transcription.
Resumo:
The liver involvement in the human visceral leishmaniasis (VL) has been related to parasitism and activated Kupffer cells with further occasional fibrotic alterations, especially after long-term disease without treatment. However, fibrotic alterations have been reported after therapy, whose clinical finding is the persistence of hepatomegaly. Fibrotic involvement of the liver after therapy was never well understood, and the aim of this study was to evaluate this finding through ultrastructural and morphometric analysis. A case-control study was performed with 20 patients (15 cases and five controls). Cases included patients with persistent hepatomegaly (residual) after treatment of VL submitted to liver biopsy to exclude other causes of liver enlargement, including serum tests of viral hepatitis. The material was evaluated by electron microcopy allowing ultrastructural with morphometric analysis of medium portion of hepatic lobule. Narrow sinusoidal lumen and prominent Kupffer cells were found with insignificant alterations of hepatocytes, pit, and endothelial cells. On ultrastructural analysis, the enlargement of the space of Disse was due to fibrous collagen, increase of number of Ito cells, and nonfibrous extracellular matrix that were associated with Kupffer cells enlargement. Immunohistochemistry showed an intense expression of TGF-beta in patients with VL. These findings suggest a production of TGF-beta by Kupffer cells that resulted in the characteristic fibrotic involvement of the liver. Residual hepatomegaly in visceral leishmaniasis could result from sustained Kupffer cell activation with perihepatocytic fibrosis.
Resumo:
We evaluated the influence of iNOS-derived NO on the mechanics, inflammatory, and remodeling process in peripheral lung parenchyma of guinea pigs with chronic pulmonary allergic inflammation. Animals treated or not with 1400W were submitted to seven exposures of ovalbumin in increasing doses. Seventy-two hours after the 7th inhalation, lung strips were suspended in a Krebs organ bath, and tissue resistance and elastance measured at baseline and after ovalbumin challenge. The strips were submitted to histopathological measurements. The ovalbumin-exposed animals showed increased maximal responses of resistance and elastance (p < 0.05), eosinophils counting (p < 0.001), iNOS-positive cells (p < 0.001), collagen and elastic fiber deposition (p < 0.05), actin density (p < 0.05) and 8-iso-PGF2 alpha expression (p < 0.001) in alveolar septa compared to saline-exposed ones. Ovalbumin-exposed animals treated with 1400 W had a significant reduction in lung functional and histopathological findings (p < 0.05). We showed that iNOS-specific inhibition attenuates lung parenchyma constriction, inflammation, and remodeling, suggesting NO-participation in the modulation of the oxidative stress pathway. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Chronic mucocutaneous candidiasis (CMC) is a rare disease associated with immunodeficiency and characterized by persistent and refractory infections of the skin, appendages and mucous membranes caused by members of the genus Candida. Several different disorders are classified under this common denominator, including chronic and recurrent mucocutaneous infections due to Candida spp., which are sometimes linked to autoimmune endocrinopathies. These fungal infections are usually confined to the mucocutaneous surface, with little propensity for systemic disease or septicemia. We describe a patient with CMC who had an esophageal candidiasis refractory to treatment for decades and who developed an epidermoid esophageal cancer. No risk factors such as familiar susceptibility, smoking, alcohol drinking, or living in an endemic area were verified. This case report suggests the participation of nitrosamine compounds produced by chronic Candida infections as a risk factor for esophageal cancer in a patient with autosomal-dominant chronic mucocutaneous candidiasis.
Eosinophils in bronchial mucosa of asthmatics after allergen challenge: effect of anti-IgE treatment
Resumo:
Anti-IgE, omalizumab, inhibits the allergen response in patients with asthma. This has not been directly related to changes in inflammatory conditions. We hypothesized that anti-IgE exerts its effects by reducing airway inflammation. To that end, the effect of anti-IgE on allergen-induced inflammation in bronchial biopsies in 25 patients with asthma was investigated in a randomized, double-blind, placebo-controlled study. Allergen challenge followed by a bronchoscopy at 24 h was performed at baseline and after 12 weeks of treatment with anti-IgE or placebo. Provocative concentration that causes a 20% fall in forced expiratory volume in 1 s (PC(20)) methacholine and induced sputum was performed at baseline, 8 and 12 weeks of treatment. Changes in the early and late responses to allergen, PC(20), inflammatory cells in biopsies and sputum were assessed. Both the early and late asthmatic responses were suppressed to 15.3% and 4.7% following anti-IgE treatment as compared with placebo (P < 0.002). This was paralleled by a decrease in eosinophil counts in sputum (4-0.5%) and postallergen biopsies (15-2 cells/0.1 mm(2)) (P < 0.03). Furthermore, biopsy IgE+ cells were significantly reduced between both the groups, whereas high-affinity IgE receptor and CD4+ cells were decreased within the anti-IgE group. There were no significant differences for PC(20) methacholine. The response to inhaled allergen in asthma is diminished by anti-IgE, which in bronchial mucosa is paralleled by a reduction in eosinophils and a decline in IgE-bearing cells postallergen without changing PC(20) methacholine. This suggests that the benefits of anti-IgE in asthma may be explained by a decrease in eosinophilic inflammation and IgE-bearing cells.
Resumo:
Vascular remodeling is an important feature in asthma pathophysiology. Although investigations suggested that nitric oxide (NO) is involved in lung remodeling, little evidence established the role of inducible NO synthase (iNOS) isoform in bronchial vascular remodeling. The authors investigated if iNOS contribute to bronchial vascular remodeling induced by chronic allergic pulmonary inflammation. Guinea pigs were submitted to ovalbumin exposures with increasing doses (1 similar to 5 mg/mL) for 4 weeks. Animals received 1400W (iNOS-specific inhibitor) treatment for 4 days beginning at 7th inhalation. Seventy-two hours after the 7th inhalation, animals were anesthetized, mechanical ventilated, exhaled NO was collected, and lungs were removed and submitted to picrosirius and resorcin-fuchsin stains and to immunohistochemistry for matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), and transforming growth factor-beta (TGF-beta). Collagen and elastic fiber deposition as well as MMP-9, TIMP-1, and TGF-beta expression were increase in bronchial vascular wall in ovalbumin-exposed animals. The iNOS inhibition reduced all parameters studied. In this model, iNOS inhibition reduced the bronchial vascular extracellular remodeling, particularly controlling the collagen and elastic fibers deposition in pulmonary vessels. This effect can be associated to a reduction on TGF-beta and on metalloproteinase-9/TIMP-1 vascular expression. It reveals new therapeutic strategies and some possible mechanism related to specific iNOS inhibition to control vascular remodeling.
Resumo:
Oral tolerance attenuates changes in in vitro lung tissue mechanics and extracellular matrix remodeling induced by chronic allergic inflammation in guinea pigs. J Appl Physiol 104: 1778-1785, 2008. First published April 3, 2008; doi:10.1152/japplphysiol.00830.2007.-Recent studies emphasize the presence of alveolar tissue inflammation in asthma. Immunotherapy has been considered a possible therapeutic strategy for asthma, and its effect on lung tissue had not been previously investigated. Measurements of lung tissue resistance and elastance were obtained before and after both ovalbumin and acetylcholine challenges. Using morphometry, we assessed eosinophil and smooth muscle cell density, as well as collagen and elastic fiber content, in lung tissue from guinea pigs with chronic pulmonary allergic inflammation. Animals received seven inhalations of ovalbumin (1-5 mg/ml; OVA group) or saline (SAL group) during 4 wk. Oral tolerance (OT) was induced by offering ad libitum ovalbumin 2% in sterile drinking water starting with the 1st inhalation (OT1 group) or after the 4th (OT2 group). The ovalbumin-exposed animals presented an increase in baseline and in postchallenge resistance and elastance related to baseline, eosinophil density, and collagen and elastic fiber content in lung tissue compared with controls. Baseline and post-ovalbumin and acetylcholine elastance and resistance, eosinophil density, and collagen and elastic fiber content were attenuated in OT1 and OT2 groups compared with the OVA group. Our results show that inducing oral tolerance attenuates lung tissue mechanics, as well as eosinophilic inflammation and extracellular matrix remodeling induced by chronic inflammation.
Resumo:
We hypothesized that bone marrow-derived mononuclear cells (BMDMC) would attenuate the remodeling process in a chronic allergic inflammation model. C57BL/6 mice were assigned to two groups. In OVA, mice were sensitized and repeatedly challenged with ovalbumin. Control mice (C) received saline under the same protocol. C and OVA were further randomized to receive BMDMC (2 x 10(6)) or saline intravenously 24 h before the first challenge. BMDMC therapy reduced eosinophil infiltration, smooth muscle-specific actin expression, subepithelial fibrosis, and myocyte hypertrophy and hyperplasia, thus causing a decrease in airway hyperresponsiveness and lung mechanical parameters. BMDMC from green fluorescent protein (GFP)-transgenic mice transplanted into GFP-negative mice yielded lower engraftment in OVA. BMDMC increased insulin-like growth factor expression, but reduced interleukin-5, transforming growth factor-beta, platelet-derived growth factor, and vascular endothelial growth factor mRNA expression. In conclusion, in the present chronic allergic inflammation model, BMDMC therapy was an effective pre-treatment protocol that potentiated airway epithelial cell repair and prevented inflammatory and remodeling processes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background: Up to 60% of chronic obstructive pulmonary disease ( COPD) patients can present airway hyperresponsiveness. However, it is not known whether the peripheral lung tissue also shows an exaggerated response to agonists in COPD. Objectives: To investigate the in vitro mechanical behavior and the structural and inflammatory changes of peripheral lung tissue in COPD patients and compare to nonsmoking controls. Methods: We measured resistance and elastance at baseline and after acetylcholine (ACh) challenge of lung strips obtained from 10 COPD patients and 10 control subjects. We also assessed the alveolar tissue density of neutrophils, eosinophils, macrophages, mast cells and CD8+ and CD4+ cells, as well as the content of alpha-smooth muscle actin-positive cells and elastic and collagen fibers. We further investigated whether changes in in vitro parenchymal mechanics correlated to structural and inflammatory parameters and to in vivo pulmonary function. Results: Values of resistance after ACh treatment and the percent increase in tissue resistance (%R) were higher in the COPD group (p <= 0.03). There was a higher density of macrophages and CD8+ cells (p < 0.05) and a lower elastic content (p = 0.003) in the COPD group. We observed a positive correlation between %R and eosinophil and CD8+ cell density (r = 0.608, p = 0.002, and r = 0.581, p = 0.001, respectively) and a negative correlation between %R and the ratio of forced expiratory volume in 1 s to forced vital capacity (r = -0.451, p < 0.05). Conclusions: The cholinergic responsiveness of parenchymal lung strips is increased in COPD patients and seems to be related to alveolar tissue eosinophilic and CD8 lymphocytic inflammation and to the degree of airway obstruction on the pulmonary function test. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
We evaluated if repeated stress modulates mucociliary clearance and inflammatory responses in airways of guinea pigs (GP) with chronic inflammation. The GP received seven exposures of ovalbumin or saline 0.9%. After 4th inhalation, animals were submitted to repeated forced swim stressor protocol (5x/week/2 weeks). After 7th inhalation, GP were anesthetized. We measured transepithelial potential difference, ciliary beat frequency, mucociliary transport, contact angle, cough transportability and serum cortisol levels. Lungs and adrenals were removed, weighed and analyzed by morphometry. Ovalbumin-exposed animals submitted to repeated stress had a reduction in mucociliary transport, and an increase on serum cortisol, adrenals weight, mucus wettability and adhesivity, positive acid mucus area and IL-4 positive cells in airway compared to non-stressed ovalbumin-exposed animals (p < 0.05). There were no effects on eosinophilic recruitment and IL-13 positive cells. Repeated stress reduces mucociliary clearance due to mucus theological-property alterations, increasing acid mucus and its wettability and adhesivity. These effects seem to be associated with IL-4 activation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Along the aluminum refining process, alumina (Al(2)O(3)) constitutes the main source of dust. Although aluminum refinery workers present respiratory symptoms with lung functional changes, no conclusive data about lung function impairment after alumina exposure has been so far reported. We examined the pulmonary alterations of exposure to material collected in an aluminum refinery in Brazil. BALB/c mice were exposed in a whole-body chamber for 1 h to either saline (CTRL, n = 11) or to a suspension (in saline) of 8 mg/m(3) of the dust (ALUM, n = 11) both delivered by an ultrasonic nebulizer. Twenty-four hours after exposure lung mechanics were measured by the end-inflation method. Lungs were prepared for histology. ALUM showed significantly higher static elastance (34.61 +/- 5.76 cmH(2)O/mL), elastic component of viscoelasticity (8.16 +/- 1.20 cmH(2)O/mL), pressure used to overcome the resistive component of viscoelasticity (1.62 +/- 0.24 cmH(2)O), and total resistive pressure (2.21 +/- 0.49 cmH(2)O) than CTRL (27.95 +/- 3.63 cmH(2)O/mL, 6.12 +/- 0.99 cmH(2)O/mL, 1.23 +/- 0.19 cmH(2)O, and 1.68 +/- 0.23 cmH(2)O, respectively). ALUM also presented significantly higher fraction area of alveolar collapse (69.7 +/- 1.2%) and influx of polymorphonuclear cells (27.5 +/- 1.1%) in lung parenchyma than CTRL (27.2 +/- 1.1% and 14.6 +/- 0.7%, respectively). The composition analysis of the particulate matter showed high concentrations of aluminum. For the first time it was demonstrated in an experimental model that an acute exposure to dust collected in an aluminum producing facility impaired lung mechanics that could be associated with inflammation.
Resumo:
Background: Few studies have addressed small airway (SA) histopathological changes and their possible role in the remodeling process in idiopathic interstitial pneumonias. Objectives: To study morphological, morphometrical and immunohistochemical features of SA in idiopathic pulmonary fibrosis (usual interstitial pneumonia, UIP) and nonspecific interstitial pneumonia (NSIP). Methods: We analyzed SA pathology in lung biopsies from 29 patients with UIP and 8 with NSIP. Biopsies were compared with lung tissue from 13 patients with constrictive bronchiolitis (CB) as positive controls and 10 normal autopsied control lungs. We semi-quantitatively analyzed SA structure, inflammation, architectural features and the bronchiolar epithelial immunohistochemical expression of TGF-beta, MMP-2, 7, 9, and their tissue inhibitors (TIMP-1, 2). Results: Compared to controls, patients with UIP, NSIP and CB presented increased bronchiolar inflammation, peribronchiolar inflammation and fibrosis and decreased luminal areas. UIP patients had thicker walls due to an increase in most airway compartments. NSIP patients presented increased epithelial areas, whereas patients with CB had larger inner wall areas. All of the groups studied presented increased bronchiolar expression of MMP-7 and MMP-9, compared to the controls. Conclusion: We conclude that SAs are pathologically altered and may take part in the lung-remodeling process in idiopathic interstitial pneumonias. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
RAMOS, D. S. C. R. OLIVO. F. D. QUIRINO SANTOS LOPES, A. C. TOLEDO, M. A. MARTINS, R. A. LAZO OSORIO. M. DOLHNIKOFF, W. RIBEIRO, and R. R VIEIRA. Low-Intensity Swimming Training Partially Inhibits Lipopolysaccharide-Induced Acute Lung Injury. Med. Sci. Sports Exerc.. Vol. 42, No. 1, pp. 113-119, 2010. Background: Aerobic exercise-decreases pulmonary inflammation and remodeling in experimental models of allergic asthma. However, the effects of aerobic exercise oil pulmonary inflammation of nonallergic Origin, such as in experimental models of acute long injury induced by lipopolysaccharide (LPS), have not been evaluated. Objective: The present study evaluated file effects of aerobic exercise in a model of LPS-induced acute lung injury. Methods: BALB/c mice were divided into four groups: Control, Aerobic Exercise, LPS, and Aerobic Exercise + LPS. Swimming tests were conducted at baseline and at 3 and 6 wk. Low-Intensity swimming training was performed for 6 wk, four times per week, 60 min per session. Intranasal LPS (1 mg.kg(-1) (60 mu g per mouse)) was instilled 24 It after the last swimming physical test in the LPS and Aerobic Exercise + LPS mice, and the animals were studied 24 It after LPS instillation. Exhaled nitric oxide, respiratory mechanics, total and differential cell Counts in bronchoalveolar lavage, and lung parenchymal inflammation and remodeling were evaluated. Results: LPS instillation resulted in increased levels of exhaled nitric oxide (P < 0.001), higher numbers of neutrophils in file bronchoalveolar lavage (P < 0.001) and in the lung parenchyma (P < 0.001), and decreased lung tissue resistance (P < 0.05) and volume proportion of elastic fibers (P < 0.01) compared with the Control group. Swim training in LPS-instilled animals resulted in significantly lower exhaled nitric oxide levels (P < 0.001) and fewer nelltrophils in the bronchoalveolar lavage (P < 0.001) and the lung parenchyma (P < 0.01) compared with the LPS group. Conclusions: These results Suggest that low-intensity swimming training inhibits lung neutrophilic inflammation, but not remodeling and impaired lung mechanics, in a model of LPS-induced acute lung injury.
Resumo:
P>Allergens can be maternally transferred to the fetus or neonate, though it is uncertain how this initial allergen exposure may impact the development of allergy responses. To evaluate the roles of timing and level of maternal allergen exposure in the early life sensitization of progeny, female BALB/c mice were given ovalbumin (OVA) orally during pregnancy, lactation or weekly at each stage to investigate the immunoglobulin E (IgE) antibody production and cellular responsiveness of their offspring. Exposure to OVA during pregnancy was also evaluated in OVA-specific T-cell receptor (TCR) transgenic (DO11.10) mice. The effect of prenatal antigen exposure on offspring sensitization was dependent on antigen intake, with low-dose OVA inducing tolerance followed by neonatal immunization that was sustained even when pups were immunized when 3 weeks old. These offspring received high levels of transforming growth factor-beta via breastfeeding. High-dose exposure during the first week of pregnancy or perinatal period induced transient inhibition of IgE production following neonatal immunization; although for later immunization IgE production was enhanced in these offspring. Postnatal maternal antigen exposure provided OVA transference via breastfeeding, which consequently induced increased offspring susceptibility to IgE antibody production according to week post-birth. The effect of low-dose maternal exposure during pregnancy was further evaluated using OVA transgenic TCR dams as a model. These progeny presented pronounced entry of CD4(+) T cells into the S phase of the cell cycle with a skewed T helper type 2 response early in life, revealing the occurrence of allergen priming in utero. The balance between tolerance and sensitization depended on the amount and timing of maternal allergen intake during pregnancy.
Resumo:
Particulate matter, especially PM2.5, is associated with increased morbidity and mortality from respiratory diseases. Studies that focus on the chemical composition of the material are frequent in the literature, but those that characterize the biological fraction are rare. The objectives of this study were to characterize samples collected in Sao Paulo, Brazil on the quantity of fungi and endotoxins associated with PM2.5, correlating with the mass of particulate matter, chemical composition and meteorological parameters. We did that by Principal Component Analysis (PCA) and multiple linear regressions. The results have shown that fungi and endotoxins represent significant portion of PM2.5, reaching average concentrations of 772.23 spores mu g(-1) of PM2.5 (SD: 400.37) and 5.52 EU mg(-1) of PM2.5 (SD: 4.51 EU mg(-1)), respectively. Hyaline basidiospores, Cladosporium and total spore counts were correlated to factor Ba/Ca/Fe/Zn/K/Si of PM2.5 (p < 0.05). Genera Pen/Asp were correlated to the total mass of PM2.5 (p < 0.05) and colorless ascospores were correlated to humidity (p < 0.05). Endotoxin was positively correlated with the atmospheric temperature (p < 0.05). This study has shown that bioaerosol is present in considerable amounts in PM2.5 in the atmosphere of Sao Paulo, Brazil. Some fungi were correlated with soil particle resuspension and mass of particulate matter. Therefore, the relative contribution of bioaerosol in PM2.5 should be considered in future studies aimed at evaluating the clinical impact of exposure to air pollution. (C) 2010 Elsevier Ltd. All rights reserved.