976 resultados para PERI-IMPLANT BONE
Resumo:
Introduction The objective of the present study was to assess the craniocervical posture and the positioning of the hyoid bone in children with asthma who are mouth breathers compared to non-asthma controls. Methods The study was conducted on 56 children, 28 of them with mild (n = 15) and moderate (n = 13) asthma (14 girls aged 10 79 +/- 1 31 years and 14 boys aged 9 79 +/- 1.12 years), matched for sex, height, weight and age with 28 non-asthma children who are not mouth breathers The sample size was calculated considering a confidence interval of 95% and a prevalence of 4% of asthma in Latin America. Eighteen variables were analyzed in two radiographs (latero-lateral teleradiography and lateral cervical spine radiography), both obtained with the head in a natural position The independent t-test was used to compare means values and the chi-square test to compare percentage values (p < 0 05) Intraclass correlation coefficient (ICC) was used to verify reliability. Results. The Craniovertebral Angle (CVA) was found to be significantly smaller in asthma than in control children (106.38 +/- 766 vs. 111 21 +/- 7.40. p = 0 02) and the frequency of asthma children with an absent or inverted hyoid triangle was found to be significantly higher compared to non-asthma children (36% vs 7%, p = 0.0001). The values of the inclination angles of the superior cervical spine in relation to the horizontal plane were significantly higher in moderate than in mild asthma children (CVT/Hor 85 10 +/- 725 vs. 90 92 +/- 6.69, p = 0 04 and C1/Hor. 80 93 +/- 5.56 vs 85 00 +/- 4 20, p = 0 04) Conclusions These findings revealed that asthma children presented higher head extension and a higher frequency of changes in hyoid bone position compared to non-asthma children and that greater the asthma severity greater the extension of the upper cervical spine. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Clinical feasibility of mandibular implant overdenture retainers submitted to immediate load Introduction: Millions of people around the world do not have access to the benefits of osseointegration. Treatments involving oral rehabilitation with overdentures have been widely used by specialists in the oral medicine field. This is an alternative therapy for retention and stability achievement in total prosthesis with conventional treatment, and two implants are enough to establish a satisfactory overdenture. Objective: The objectives of the study were to evaluate 16 patients of both sexes, with an average age of 47.4 +/- 4 years, using electromyographic analysis of masseter and temporal muscles and analyse the increase of incisive and molar maximal bite force with their existing complete dentures and following mandibular implant overdenture therapy to assess the benefits of this treatment. Materials and methods: For these tests, the Myosystem-BR1 electromyograph and the IDDK Kratos dynamometer were used. Statistical analysis was performed using the repeated measures test (SPSS 17.0). Results: A decrease in electromyographic activity during the rest, lateral and protrusion movements and increase of the maximal incisive and molar bite force after 15 months with a mandibular implant overdenture was observed. Conclusion: All the patients in this study reported a considerable improvement in the masticatory function and prostheses stability following treatment. It is possible to propose that the use of mandibular implants overdenture should become the selected treatment for totally edentulous patients to facilitate oral function and quality of life.
Resumo:
Objectives The aims of this research were to evaluate the efficacy of a bioactive glass-ceramic (Biosilicate (R)) and a bioactive glass (Biogran (R)) placed in dental sockets in the maintenance of alveolar ridge and in the osseointegration of Ti implants. Material and methods Six dogs had their low premolars extracted and the sockets were implanted with Biosilicate (R), Biogran (R) particles, or left untreated. After the extractions, measurements of width and height on the alveolar ridge were taken. After 12 weeks a new surgery was performed to take the final ridge measurements and to insert bilaterally three Ti implants in biomaterial-implanted and control sites. Eight weeks post-Ti implant placement block biopsies were processed for histological and histomorphometric analysis. The percentages of bone-implant contact (BIC), of mineralized bone area between threads (BABT), and of mineralized bone area within the mirror area (BAMA) were determined. Results The presence of Biosilicate (R) or Biogran (R) particles preserved alveolar ridge height without affecting its width. No significant differences in terms of BIC, BAMA, and BABT values were detected among Biosilicate (R), Biogran (R), and the non-implanted group. Conclusions The results of the present study indicate that filling of sockets with either Biosilicate (R) or Biogran (R) particles preserves alveolar bone ridge height and allows osseointegration of Ti implants. To cite this article:Roriz VM, Rosa AL, Peitl O, Zanotto ED, Panzeri H, de Oliveira PT. Efficacy of a bioactive glass-ceramic (Biosilicate (R)) in the maintenance of alveolar ridges and in osseointegration of titanium implants.Clin. Oral Impl. Res. 21, 2010; 148-155.doi: 10.1111/j.1600-0501.2009.01812.x.
Resumo:
The aim of this study was to analyze if the presence of impacted third molars, and their positions in the mandibular angle, can change the bone quality in this area, considering the measure of the cortical thickness in this region as representative or not for mandible fracture risk. Software was used to analyze 50 digital images from panoramic radiographs of patients who had one or two impacted third molars in the mandible, and 30 digital images of patients with agenesis of the mandibular third molar. The thickness of the cortical region of the mandible was measured; it was possible to draw a parallel line to the posterior portion of the mandible and a parallel line to the body of this bone on each side of the image. At the intersection of these lines near the distal portion of the second molar, another line was set up to serve as reference in the cortical thickness measurement. It could be concluded that the cortical thickness of the mandibular angle in male patients without impacted third molars was greater than the thickness in patients with these teeth, and no difference in thickness was found for the female group.
Resumo:
Cisplatin is one of the most widely used and effective chemotherapeutic agents for the treatment of several human malignancies. This study evaluated the effects of peri-pubertal cisplatin administration on several reproductive end-points and the reversibility of these effects in adulthood. Peri-pubertal Wistar male rats (45 days old) were divided into two groups: control (saline 0.9%) and cisplatin (1 mg/kg/day, 5 days/week, for 3 weeks, i.p.). The study was conducted in two steps and evaluations were performed at ages of 66 (post-pubertal age) and 140 (adult age) days on: (i) organ weights, serum gonadotropins and testosterone levels, sperm counts, motility and morphology, testicular histomorphometry, spermatogenesis kinetics, Sertoli cell number and in situ detection of apoptotic germ cells and (ii) sexual behaviour, fertility and intratesticular testosterone. At the end of cisplatin therapy, rats showed reductions in sperm production and reserves, sperm with progressive movement, tubular diameter, intratesticular testosterone and fertility potential, but increased numbers of TUNEL-positive seminiferous tubules, immotile sperm and pre-implantation losses compared with control. Moreover, cisplatin-treated post-pubertal rats displayed impaired testicular histopathology and sexual behaviour. Serum gonadotropins and testosterone levels, sperm morphology, spermatogenesis kinetics and Sertoli cell number were comparable between experimental groups at both ages. Alterations found in post-puberty were recovered at adulthood, except for sperm motility and damage to testicular histology. The persistence of these cisplatin effects, despite the unaltered fertility after natural mating in rats, may have implications for reproductive function of young boys undergoing cancer therapy, given the lower reproductive efficiency in human beings compared with rats.
Resumo:
Despite wide clinical application, the efficacy of platelet-rich plasma (PRP) for repairing bone defects and enhancing osseointegration of metal implants is still subject of debate. This study aimed to evaluate the effects of a well-defined PRP-like mixture containing platelet-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin [growth factors (GFs) + proteins] on the development of the osteogenic phenotype on titanium (Ti) in vitro. Human alveolar bone-derived osteoblastic cells were subcultured on Ti discs and exposed during the first 7 days to osteogenic medium supplemented with GFs + proteins and to osteogenic medium alone thereafter up to 14 days. Control cultures were exposed to only osteogenic medium. Dose-response experiments were carried out using rat primary calvarial cells exposed to GFs + proteins and 1:10 or 1:100 dilutions of the mixture. Treated human-derived cell cultures exhibited a significantly higher number of cycling cells at days 1 and 4 and of total cells at days 4 and 7, significantly reduced alkaline phosphatase (ALP) activity at days 4, 7, and 10, and no Alizarin red-stained areas (calcium deposits) at day 14, indicating an impairment in osteoblast differentiation. Although the 1:10 and 1:100 dilutions of the mixture restored the proliferative activity of rat-derived osteogenic cells to control levels and promoted a significant increase in ALP activity at day 10 compared with GFs + proteins, mineralized nodule formation was only observed with the 1:100 dilution (similar to 50% of the control). These results showed that a PRP-like protein mixture inhibits development of the osteogenic phenotype in both human and rat osteoblastic cell cultures grown on Ti. (J Histochem Cytochem 57:265-276, 2009)
Resumo:
In the present study we characterized titanium (Ti) surfaces submitted to different treatments and evaluated the response of osteoblasts derived from human alveolar bone to these surfaces. Five different surfaces were evaluated: ground (G), ground and chemical etched (G1-HF for 60 s), sand blasted (SB-Al2O3 particles 65 pm), sand blasted and chemical etched (SLA1-HF for 60 s and SLA2-HF for 13 s). Surface morphology was evaluated under SEM and roughness parameters by contact scanning instrument. The presence of Al2O3 was detected by EDS and the amount calculated by digital analyses. Osteoblasts, were cultured on these surfaces and it was evaluated: cell adhesion, proliferation, and viability, alkaline phosphatase activity, total protein content, and matrix mineralization formation. Physical and chemical treatments produced very different surface morphologies. Al2O3 residues were detected on SB and SLA2 surfaces. Only matrix mineralization formation was affected by different surface treatments, being increased on rough surface (SLA1) and reduced on surface with high amount of Al2O3 residues (SB). On the basis of these findings, it is possible to conclude that high concentration of residual Al2O3 negatively interfere with the process of matrix mineralization formation in contact with Ti implant surfaces. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 87A: 588-597, 2008
Resumo:
In the course of attempting to define the bone ""secretome"" using a signal-trap screening approach, we identified a gene encoding a small membrane protein novel to osteoblasts. Although previously identified in silico as ifitm5, no localization or functional studies had been undertaken on this gene. We characterized the expression patterns and localization of this gene in vitro and in vivo and assessed its role in matrix mineralization in vitro. The bone specificity and shown role in mineralization led us to rename the gene bone restricted ifitm-like protein (Bril). Bril encodes a 14.8-kDa 1.34 arnino acid protein with two transmembrane domains. Northern blot analysis showed bone-specific expression with no expression in other embryonic or adult tissues. In situ hybridization and immunohistochemistry in mouse embryos showed expression localized on the developing bone. Screening of cell lines showed Bril expression to be highest in osteoblasts, associated with the onset of matrix maturation/mineralization, suggesting a role in bone formation. Functional evidence of a role in mineralization was shown by adenovirus-mediated Brit overexpression and lentivirus-mediated Bril shRNA knockdown in vitro. Elevated Bril resulted in dose-dependent increases in mineralization in UMR106 and rat primary osteoblasts. Conversely, knockdown of Bril in MC3T3 osteoblasts resulted in reduced mineralization. Thus, we identified Bril as a novel osteoblast protein and showed a role in mineralization, possibly identifying a new regulatory pathway in bone formation.
Resumo:
Strategies to promote bone repair have included exposure of cells to growth factor (GF) preparations from blood that generally include proteins as part of a complex mixture. This study aimed to evaluate the effects of such a mixture on different parameters of the development of the osteogenic phenotype in vitro. Osteoblastic cells were obtained by enzymatic digestion of human alveolar bone and cultured under standard osteogenic conditions until subconfluence. They were subcultured on Thermanox coverslips up to 14 days. Treated cultures were exposed during the first 7 days to osteogenic medium supplemented with a GFs + proteins mixture containing the major components found in platelet extracts [plate I et-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin] and to osteogenic medium alone thereafter. Control cultures were exposed only to the osteogenic medium. Treated cultures exhibited a significantly higher number of adherent cells from day 4 onward and of cycling cells at days 1 and 4, weak alkaline phosphatase (ALP) labeling, and significantly decreased levels of ALP activity and mRNA expression. At day 14, no Alizarin red-stained nodular areas were detected in cultures treated with GFs + proteins. Results were confirmed in the rat calvaria-derived osteogenic cell culture model. The addition of bone morphogenetic protein 7 or growth and differentiation factor 5 to treated cultures upregulated Runx2 and ALP mRNA expression, but surprisingly, ALP activity was not restored. These results showed that a mixture of GFs + proteins affects the development of the osteogenic phenotype both in human and rat cultures, leading to an increase in the number of cells, but expressed a less differentiated state.
Resumo:
The objective of this study was to evaluate the bone repair along a mandibular body osteotomy after using a 2.0 miniplate system. Nine adult mongrel dogs were subjected to unilateral continuous defect through an osteotomy between the mandibular 3rd and 4th premolars. Two four-hole miniplates were placed in accordance with the Arbeitgeimeinschaft fur Osteosynthesefragen Manual. Miniplates adapted to the alveolar processes were fixed monocortically with 6.0-mm-length titanium alloy self-tapping screws, whereas miniplates placed near the mandible bases were fixed bicortically. At 2, 6 and 12 weeks, three dogs were sacrificed per period, and the osteotomy sites were removed, divided into three thirds (Tension Third, TT; Intermediary Third, IT; Compression Third, CT) and prepared for conventional and polarized light microscopy. At 6 weeks, while the CT repaired faster and showed bone union by woven bone formation, the TT and IT exhibited a ligament-like fibrous connective tissue inserted in, and connecting, newly formed woven bone overlying the parent lamellar bone edges. At 12 weeks, bone repair took place at all thirds. Histometrically, proportions of newly formed bone did not alter at TT, IT and CT, whereas significantly enhanced bone formation was observed for the 12-week group, irrespective of the third. The results demonstrated that although the method used to stabilize the mandibular osteotomy allowed bone repair to occur, differences in the dynamics of bone healing may take place along the osteotomy site, depending on the action of tension and compression forces generated by masticatory muscles.
Resumo:
Purpose: The double system of support, in which the distal-extension removable partial denture adapts, causes inadequate stress around abutment teeth, increasing the possibility of unequal bone resorption. Several ways to reduce or more adequately distribute the stress between abutment teeth and residual ridges have been reported; however, there are no definitive answers to the problem. The purpose of this study was to analyze, by means of photoelasticity, the most favorable stress distribution using three retainers: T bar, rest, proximal plate, I bar (RPI), and circumferential with mesialized rest. Materials and Methods: Three photoelastic models were made simulating a Kennedy Class II inferior arch. Fifteen dentures with long saddles, five of each design, were adjusted to the photoelastic patterns and submitted first to uniformly distributed load, and then to a load localized on the last artificial tooth. The saddles were then shortened and the tests repeated. The quantitative and qualitative analyses of stress intensity were done manually and by photography, respectively. For intragroup analyses the Wilcoxon test for paired samples was used, while for intergroup analyses Friedman and Wilcoxon tests were used to better identify the differences (p < 0.05). Results: The RPI retainer, followed by the T bar, demonstrated the best distribution of load between teeth and residual ridge. The circumferential retainer caused greater concentration of stress between dental apexes. Stress distribution was influenced by the type of retainer, the length of the saddle, and the manner of load application. Conclusions: The long saddles and the uniformly distributed loads demonstrated better distribution of stress on support structures.
Resumo:
The aim of this in vitro study was to evaluate bacterial leakage along the implant-abutment interface under unloaded conditions. Twelve premachined abutments with plastic sleeves and 12 dental implants were used in this study. Prior to tests of bacterial leakage, samples from the inner parts of the implants were collected with sterile microbrushes to serve as negative controls for contamination. After casting, the abutments were tightened to 32 Ncm on the implants. The assemblies were immersed in 2.0 mL of human saliva and incubated for 7 days. After this period, possible contamination of the internal parts of the implants was evaluated using the DNA Checkerboard method. Microorganisms were found in the internal surfaces of all the implants evaluated. Aggregatibacter actinomycetemcomitans and Capnocytophaga gingivalis were the most incident species. No microorganisms were found in the samples recovered from the implants before contamination testing (negative control). Bacterial species from human saliva may penetrate the implant-abutment interface under unloaded conditions. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:782-787
Resumo:
There is no consensus in literature regarding the best plan for prosthetic rehabilitation with partial multiple adjacent implants to minimize stress generated in the bone-implant interface. The aim of this study was to evaluate the biomechanical behavior of cemented fixed partial dentures, splinted and nonsplinted, on Morse taper implants and with different types of coating material (ceramic and resin), using photoelastic stress analysis. A photoelastic model of an interposed edentulous space, missing a second premolar and a first molar, and rehabilitated with 4 different types of cemented crowns and supported by 2 adjacent implants was used. Groups were as follows: UC, splinted ceramic crowns; IC, nonsplinted ceramic crowns; UR, splinted resin crowns; and IR, nonsplinted resin crowns. Different vertical static loading conditions were performed: balanced occlusal load, 10 kgf; simultaneous punctiform load on the implanted premolar and molar, 10 kgf; and alternate punctiform load on the implanted premolar and molar, 5 kgf. Changes in stress distribution were analyzed in a polariscope, and digital photographs were taken of each condition to allow comparison of stress pattern distribution around the implants. Cementation of the fixed partial dentures generated stresses between implants. Splinted restorations distributed the stresses more evenly between the implants than nonsplinted when force was applied. Ceramic restorations presented better distribution of stresses than resin restorations. Based on the results obtained, it was concluded that splinted ceramic restorations promote better stress distribution around osseointegrated implants when compared with nonsplinted crowns; metal-ceramic restorations present less stress concentration and magnitude than metal-plastic restorations.
Resumo:
P>This study assessed the effect of simulated mastication on the retention of two stud attachment systems for 2-implants overdentures. Sixteen specimens, each simulating an edentulous ridge with implants and an overdenture were divided into two groups, according to the attachment system: Group I (Nobel Biocare ball-socket attachments) and Group II (Locator attachments). Retention forces were measured before and after 400 000 simulated masticatory loads in a customised device. Data were compared by two-way anova followed by Bonferroni test (alpha = 0 center dot 05). Group I presented significantly lower retention forces (Newtons) than Group II at baseline (10 center dot 6 +/- 3 center dot 6 and 66 center dot 4 +/- 16 center dot 0, respectively). However, differences were not significant after 400 000 loads (7 center dot 9 +/- 4 center dot 3 and 21 center dot 6 +/- 17 center dot 0). The number of cycles did not influence the measurements in Group I, whereas a non-linear descending curve was found for Group II. It was concluded that simulated mastication resulted in minor changes for the ball attachment tested. Nevertheless, it reduced the retention of Locator attachments to 40% of the baseline values, what suggests that mastication is a major factor associated with maintenance needs for this system.
Resumo:
Purpose: Gaps between an abutment and a dental implant are unavoidable, and microleakage may occur, leading to problems such as malodor and peri-implantitis. The aim of the present in vitro study was to investigate leakage of Staphylococcus aureus through the implant/abutment interface by the method of bacterial culture, and to compare the leakage rates of two different types of implant-abutment connections. Materials and Methods: Twenty Morse taper implants with abutments were divided into two groups: group A, which were evaluated for microleakage into the inner part of the implants, and group B, which were evaluated for microleakage from the inner part of the implants. Twenty internal-hexagon implants with abutments were also divided into two groups: group C, which were evaluated for microleakage into the inner part of the implants, and group D, which were evaluated for microleakage from the inner part of the implants. For the evaluation of leakage from the implants, the assemblies had the inner parts inoculated with S aureus, and each assembly was incubated in sterile brain heart infusion broth for 1 week. For assessment of leakage into the implants, each assembly was submerged in 4 mL S aureus culture in tubes and incubated for 2 weeks. The microleakage of the two implant connections was compared. Results: Microbial leakage occurred in all groups, and there was no statistically significant difference between groups A and C or between groups B and D. Conclusions: In vitro, S aureus leakage through the implant/abutment interface occurred with both Morse taper and internal-hexagon implants. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:56-62