969 resultados para One-pot
Resumo:
Hybrid materials of polyacrylamide networks and gold nanoparticles were prepared by directly heating an aqueous solution containing HAuCl4, acrylamide, N,N'-methylenebisacrylamide, and sodium sulfite (Na2SO3). Acrylamide, N,N'-methylenebisacrylamide, and Na2SO3 were used as monomers, crosslinking agent, and initiator, respectively.
Resumo:
A facile route to the synthesis of LnF(3) nanocrystals has been accomplished in three ionic liquids (ILs) (OmimPF(6), OmimBF(4), and BmimPF(6)). The partial hydrolysis of PF6- and BF4- was utilized to introduce a new fluoride source. Uniform LnF(3) (Ln = La, Ce, Pr, Nd, Sm, Eu, Er), Tb3+-doped CeF3, and Eu3+-doped LaF3 nanocrystals could be obtained in a large scale, and the products were up to 0.15 g per 10 mL solvents. In the "all-in-one" systems, the ILs acted as solvents, reaction agents, and templates.
Resumo:
Herein, one water-soluble functionalized ionic liquid (IL), 1-butyl-3-methylimidazolium dodecanesulfonate (BAS), was designed, investigated and successfully applied to microchip micellar electrokinetic chromatography (MEKC) construction. It possessed the properties of both IL and surfactant. A fairly stable pH value similar to 7.4, which was fit to pH values of general biological buffers, was nicely placed at the optimum concentration of 20 mM BAS solution. While applying BAS solution as running buffer in poly(dimethylsiloxane) (PDMS) microfluidic systems, significantly enhanced electroosmotic flow (8-fold) and resolutions between analytes were obtained than that using other supporting electrolytes or surfactants.
Resumo:
Highly crystalline and nearly monodisperse In2O3 nanocrystals with both cube and flower shapes were successfully synthesized in one step through a facile aqueous solvothermal method for the first time, free of any surfactant or template. X-ray diffraction (XRD), transmission electron microscopy (TEM), selective area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the samples. In our work, the use of diethylene glycol (DEG) is a crucial factor for the formation of the In2O3 phase.
Resumo:
In this paper, nanocrystalline YVO4:Eu3+ powders have been successfully synthesized via high-temperature solution-phase synthesis process. The nanocrystalline YVO4:Eu3+ particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UVNis absorption spectra and luminescence spectra, luminescence decay curve and Fourier transform infrared (FT-IR), X-ray photoelectron spectra (XPS) respectively. The as-prepared nanocrystalline YVO4:Eu3+ particles are well crystallized with ellipsoidal morphology.
Resumo:
A novel method for immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)Cl-2) on electrode surfaces based on the vapor-surface sol-gel deposition strategy is first demonstrated in this paper. Ru(bpy)(3)Cl-2 immobilized sol-gel (Ru(bpy)(3)Cl-2/sol-gel) films were characterized by UV-vis spectroscopy and field-emitted scanning electron microscopy (FE-SEM). These results showed that Ru(bpy)(3)Cl-2 was successfully incorporated into the silica sol-gel film. it was found that many irregular Ru(bpy)(3)Cl-2/sol-gel clusters were formed on surfaces through one deposition and thick sol-gel films were observed after further deposition.
Resumo:
Nanoporous In2O3 nanocrystal clusters with high surface areas have been synthesized by a one-step solvent-thermal method at a relatively low temperature. On the basis of our experimental data and nanomaterial growth mechanism, a template-assistant dehydration accompanied by aggregation mechanism was proposed to explain their formation. Besides, the influence of the high-temperature treatment on their porous structure and optical properties were studied and compared by various technologies.
Resumo:
A porous material with cobalt-oxygen cluster framework has been synthesized hydrothermally, which possesses large and rigid channels and manifests strong antiferromagnetic interactions, and the pyridinedicarboxylate ligand exhibits two types of rare coordination modes.
Resumo:
In this work, we report a simple approach for controllable synthesis of one-dimensional (ID) gold nanoparticle (AuNP) assemblies in solution. In the presence of divalent metallic ions, poly(acrylic acid)-1-dodecanethiol-stabilized AuNPs (PAA-DDT@AuNPs) are found to form I D assemblies in aqueous solution by an ion-templated chelation process; this causes an easily measurable change in the absorption spectrum of the particles. The assemblies are very stable and remain suspended in solution for more than one month without significant aggregation.
Resumo:
A facile route to the synthesis of LnF(3) nanocrystals has been accomplished in three ionic liquids (ILs) (OmimPF(6), OmimBF(4), and BmimPF(6)). The partial hydrolysis of PF6- and BF4- was utilized to introduce a new fluoride source. Uniform LnF(3) (Ln = La, Ce, Pr, Nd, Sm, Eu, Er), Tb3+-doped CeF3, and Eu3+-doped LaF3 nanocrystals could be obtained in a large scale, and the products were up to 0.15 g per 10 mL solvents. In the "all-in-one" systems, the ILs acted as solvents, reaction agents, and templates.
Resumo:
A new approach to one-dimensional organization of gold nanoparticles (2-4 nm) is described, using poly(4-vinylpyridine) (P4VP) molecular chain as a template with the mediation of free Cu2+ ion coordination. The assembly was conducted on freshly prepared mica surfaces and in aqueous solution, respectively. The surface assembly was characterized by tapping mode atomic force microscopy (AFM), observing the physisorbed molecules in their chain-like conformation with an average height of 0.4 nm.
Resumo:
A one-step method was developed to fabricate conductive graphene/SnO2 (GS) nanocomposites in acidic solution. Graphite oxides were reduced by SnCl2 to graphene sheets in the presence of HCl and urea. The reducing process was accompanied by generation of SnO2 nanoparticles. The structure and composition of GS nanocomposites were confirmed by means of transmission electron microscopy, x-ray photoelectron and Raman spectroscopy. Moreover, the ultracapacitor characteristics of GS nanocomposites were studied by cyclic voltammograms (CVs) and electrical impedance spectroscopy (EIS). The CVs of GS nanocomposites are nearly rectangular in shape and the specific capacitance degrades slightly as the voltage scan rate is increased. The EIS of GS nanocomposites presents a phase angle close to p/2 at low frequency, indicating a good capacitive behavior.
Resumo:
A simple and environment friendly chemical route for detecting latent fingermarks by one-step single-metal nanoparticles deposition method (SND) was achieved successfully on several non-porous items. Gold nanoparticles (AuNPs) synthesized using sodium borohydride as reducing agent in the presence of glucose, were used as working solution for latent fingermarks detection. The SND technique just needs one step to obtain clear ridge details in a wide pH range (2.5-5.0), whereas the standard multi-metal deposition (MMD) technique requires six baths in a narrow pH range (2.5-2.8). The SND is very convenient to detect latent fingermarks in forensic scene or laboratory for forensic operators. The SND technique provided sharp and clear development of latent fingermarks, without background staining, dramatically diminished the bath steps.
Resumo:
Four transition-metal-amine complexes incorporating indium thioarsenates with the general formula M(tren)InAsS4 (M=Mn, Co, and Zn) and a noncondensed AsS33- unit have been prepared and characterized. Single-crystal X-ray diffraction analyses show that compound 1 (M=Mn) crystallizes in the triclinic crystal system (space group: P (1) over bar) and consists of a one-dimensional (1D) inorganic (1)(infinity){[InAsS4](2-)} chain and [Mn(tren)](2+) groups bonded to the opposite sides of an eight-membered In2As2S4 ring along the backbone of the infinite inorganic chains. Compounds 2 (M=Mn), 3 (M=Zn), and 4 (M=Co) are isomorphous molecular compounds. They all crystallize in the monoclinic crystal system (space group: P2(1)/c). The Mn2+ cation of [Mn(tren)](2+) in 1 has a distorted octahedral environment, while the transition-metal cations of [M(tren)](2+) in the other three compounds locate in trigonal-bipyramidal environments.
Resumo:
One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes have been prepared by a combination method of sol-gel process and electrospinning. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low voltage cathodoluminescence (CL) and time-resolved emission spectra, as well as kinetic decays were used to characterize the resulting samples. The results of XRD, FT-IR, TG-DTA indicate that the CaWO4 and CaWO4: Tb3+ samples begin to crystallize at 500 degrees C with the scheelite structure. Under ultraviolet excitation and low-voltage electron beams excitation, the CaWO4 samples exhibit a blue emission band with a maximum at 416 nm originating from the WO42- groups, while the CaWO4:Tb3+ samples show the characteristic emission of Tb3+ corresponding to (D4-F6,5,4,3)-D-5-F-7 transitions due to an efficient energy transfer from WO42- to Tb3+.