933 resultados para Non Parametric Methodology
Resumo:
The AEGISS (Ascertainment and Enhancement of Gastrointestinal Infection Surveillance and Statistics) project aims to use spatio-temporal statistical methods to identify anomalies in the space-time distribution of non-specific, gastrointestinal infections in the UK, using the Southampton area in southern England as a test-case. In this paper, we use the AEGISS project to illustrate how spatio-temporal point process methodology can be used in the development of a rapid-response, spatial surveillance system. Current surveillance of gastroenteric disease in the UK relies on general practitioners reporting cases of suspected food-poisoning through a statutory notification scheme, voluntary laboratory reports of the isolation of gastrointestinal pathogens and standard reports of general outbreaks of infectious intestinal disease by public health and environmental health authorities. However, most statutory notifications are made only after a laboratory reports the isolation of a gastrointestinal pathogen. As a result, detection is delayed and the ability to react to an emerging outbreak is reduced. For more detailed discussion, see Diggle et al. (2003). A new and potentially valuable source of data on the incidence of non-specific gastro-enteric infections in the UK is NHS Direct, a 24-hour phone-in clinical advice service. NHS Direct data are less likely than reports by general practitioners to suffer from spatially and temporally localized inconsistencies in reporting rates. Also, reporting delays by patients are likely to be reduced, as no appointments are needed. Against this, NHS Direct data sacrifice specificity. Each call to NHS Direct is classified only according to the general pattern of reported symptoms (Cooper et al, 2003). The current paper focuses on the use of spatio-temporal statistical analysis for early detection of unexplained variation in the spatio-temporal incidence of non-specific gastroenteric symptoms, as reported to NHS Direct. Section 2 describes our statistical formulation of this problem, the nature of the available data and our approach to predictive inference. Section 3 describes the stochastic model. Section 4 gives the results of fitting the model to NHS Direct data. Section 5 shows how the model is used for spatio-temporal prediction. The paper concludes with a short discussion.
Resumo:
We consider inference in randomized studies, in which repeatedly measured outcomes may be informatively missing due to drop out. In this setting, it is well known that full data estimands are not identified unless unverified assumptions are imposed. We assume a non-future dependence model for the drop-out mechanism and posit an exponential tilt model that links non-identifiable and identifiable distributions. This model is indexed by non-identified parameters, which are assumed to have an informative prior distribution, elicited from subject-matter experts. Under this model, full data estimands are shown to be expressed as functionals of the distribution of the observed data. To avoid the curse of dimensionality, we model the distribution of the observed data using a Bayesian shrinkage model. In a simulation study, we compare our approach to a fully parametric and a fully saturated model for the distribution of the observed data. Our methodology is motivated and applied to data from the Breast Cancer Prevention Trial.
Resumo:
Ethanol-gasoline fuel blends are increasingly being used in spark ignition (SI) engines due to continued growth in renewable fuels as part of a growing renewable portfolio standard (RPS). This leads to the need for a simple and accurate ethanol-gasoline blends combustion model that is applicable to one-dimensional engine simulation. A parametric combustion model has been developed, integrated into an engine simulation tool, and validated using SI engine experimental data. The parametric combustion model was built inside a user compound in GT-Power. In this model, selected burn durations were computed using correlations as functions of physically based non-dimensional groups that have been developed using the experimental engine database over a wide range of ethanol-gasoline blends, engine geometries, and operating conditions. A coefficient of variance (COV) of gross indicated mean effective pressure (IMEP) correlation was also added to the parametric combustion model. This correlation enables the cycle combustion variation modeling as a function of engine geometry and operating conditions. The computed burn durations were then used to fit single and double Wiebe functions. The single-Wiebe parametric combustion compound used the least squares method to compute the single-Wiebe parameters, while the double-Wiebe parametric combustion compound used an analytical solution to compute the double-Wiebe parameters. These compounds were then integrated into the engine model in GT-Power through the multi-Wiebe combustion template in which the values of Wiebe parameters (single-Wiebe or double-Wiebe) were sensed via RLT-dependence. The parametric combustion models were validated by overlaying the simulated pressure trace from GT-Power on to experimentally measured pressure traces. A thermodynamic engine model was also developed to study the effect of fuel blends, engine geometries and operating conditions on both the burn durations and COV of gross IMEP simulation results.
Resumo:
Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.
Resumo:
Here, we review the effects of non-invasive brain stimulation such as transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) in the rehabilitation of neglect. We found 12 studies including 172 patients (10 TMS studies and 2 tDCS studies) fulfilling our search criteria. Activity of daily living measures such as the Barthel Index or, more specifically for neglect, the Catherine Bergego Scale were the outcome measure in three studies. Five studies were randomized controlled trials with a follow-up time after intervention of up to 6 weeks. One TMS study fulfilled criteria for Class I and one for Class III evidence. The studies are heterogeneous concerning their methodology, outcome measures, and stimulation parameters making firm comparisons and conclusions difficult. Overall, there are however promising results for theta-burst stimulation, suggesting that TMS is a powerful add-on therapy in the rehabilitation of neglect patients.
Resumo:
Relationships between mineralization, collagen orientation and indentation modulus were investigated in bone structural units from the mid-shaft of human femora using a site-matched design. Mineral mass fraction, collagen fibril angle and indentation moduli were measured in registered anatomical sites using backscattered electron imaging, polarized light microscopy and nano-indentation, respectively. Theoretical indentation moduli were calculated with a homogenization model from the quantified mineral densities and mean collagen fibril orientations. The average indentation moduli predicted based on local mineralization and collagen fibers arrangement were not significantly different from the average measured experimentally with nanoindentation (p=0.9). Surprisingly, no substantial correlation of the measured indentation moduli with tissue mineralization and/or collagen fiber arrangement was found. Nano-porosity, micro-damage, collagen cross-links, non-collagenous proteins or other parameters affect the indentation measurements. Additional testing/simulation methods need to be considered to properly understand the variability of indentation moduli, beyond the mineralization and collagen arrangement in bone structural units.
Resumo:
Individual participant data (IPD) meta-analysis is an increasingly used approach for synthesizing and investigating treatment effect estimates. Over the past few years, numerous methods for conducting an IPD meta-analysis (IPD-MA) have been proposed, often making different assumptions and modeling choices while addressing a similar research question. We conducted a literature review to provide an overview of methods for performing an IPD-MA using evidence from clinical trials or non-randomized studies when investigating treatment efficacy. With this review, we aim to assist researchers in choosing the appropriate methods and provide recommendations on their implementation when planning and conducting an IPD-MA. © 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.
Resumo:
Measuring the ratio of heterophils and lymphocytes (H/L) in response to different stressors is a standard tool for assessing long-term stress in laying hens but detailed information on the reliability of measurements, measurement techniques and methods, and absolute cell counts is often lacking. Laying hens offered different sites of the nest boxes at different ages were compared in a two-treatment crossover experiment to provide detailed information on the procedure for measuring and the difficulties in the interpretation of H/L ratios in commercial conditions. H/L ratios were pen-specific and depended on the age and aviary system. There was no effect for the position of the nest. Heterophiles and lymphocytes were not correlated within individuals. Absolute cell counts differed in the number of heterophiles and lymphocytes and H/L ratios, whereas absolute leucocyte counts between individuals were similar. The reliability of the method using relative cell counts was good, yielding a correlation coefficient between double counts of r > 0.9. It was concluded that population-based reference values may not be sensitive enough to detect individual stress reactions and that the H/L ratio as an indicator of stress under commercial conditions may not be useful because of confounding factors and that other, non-invasive, measurements should be adopted.
Resumo:
Bone marrow ablation, i.e., the complete sterilization of the active bone marrow, followed by bone marrow transplantation (BMT) is a comment treatment of hematological malignancies. The use of targeted bone-seeking radiopharmaceuticals to selectively deliver radiation to the adjacent bone marrow cavities while sparing normal tissues is a promising technique. Current radiopharmaceutical treatment planning methods do not properly compensate for the patient-specific variable distribution of radioactive material within the skeleton. To improve the current method of internal dosimetry, novel methods for measuring the radiopharmaceutical distribution within the skeleton were developed. 99mTc-MDP was proven as an adequate surrogate for measuring 166Ho-DOTMP skeletal uptake and biodistribution, allowing these measures to be obtained faster, safer, and with higher spatial resolution. This translates directly into better measurements of the radiation dose distribution within the bone marrow. The resulting bone marrow dose-volume histograms allow prediction of the patient disease response where conventional organ scale dosimetry failed. They indicate that complete remission is only achieved when greater than 90% of the bone marrow receives at least 30 Gy. ^ Comprehensive treatment planning requires combining target and non-target organ dosimetry. Organs in the urinary tract were of special concern. The kidney dose is primarily dependent upon the mean transit time of 166 Ho-DOTMP through the kidney. Deconvolution analysis of renograms predicted a mean transit time of 2.6 minutes for 166Ho-DOTMP. The radiation dose to the urinary bladder wall is dependent upon numerous factors including patient hydration and void schedule. For beta-emitting isotopes such as 166Ho, reduction of the bladder wall dose is best accomplished through good patient hydration and ensuring a partially full bladder at the time of injection. Encouraging the patient to void frequently, or catheterizing the patient without irrigation, will not significantly reduce the bladder wall dose. ^ The results from this work will produce the most advanced treatment planning methodology for bone marrow ablation therapy using radioisotopes currently available. Treatments can be tailored specifically for each patient, including the addition of concomitant total body irradiation for patients with unfavorable dose distributions, to deliver a desired patient disease response, while minimizing the dose or toxicity to non-target organs. ^
Resumo:
Background. Nosocomial infections are a source of concern for many hospitals in the United States and worldwide. These infections are associated with increased morbidity, mortality and hospital costs. Nosocomial infections occur in ICUs at a rate which is five times greater than those in general wards. Understanding the reasons for the higher rates can ultimately help reduce these infections. The literature has been weak in documenting a direct relationship between nosocomial infections and non-traditional risk factors, such as unit staffing or patient acuity.^ Objective. To examine the relationship, if any, between nosocomial infections and non-traditional risk factors. The potential non-traditional risk factors we studied were the patient acuity (which comprised of the mortality and illness rating of the patient), patient days for patients hospitalized in the ICU, and the patient to nurse ratio.^ Method. We conducted a secondary data analysis on patients hospitalized in the Medical Intensive Care Unit (MICU) of the Memorial Hermann- Texas Medical Center in Houston during the months of March 2008- May 2009. The average monthly values for the patient acuity (mortality and illness Diagnostic Related Group (DRG) scores), patient days for patients hospitalized in the ICU and average patient to nurse ratio were calculated during this time period. Active surveillance of Bloodstream Infections (BSIs), Urinary Tract Infections (UTIs) and Ventilator Associated Pneumonias (VAPs) was performed by Infection Control practitioners, who visited the MICU and performed a personal infection record for each patient. Spearman's rank correlation was performed to determine the relationship between these nosocomial infections and the non-traditional risk factors.^ Results. We found weak negative correlations between BSIs and two measures (illness and mortality DRG). We also found a weak negative correlation between UTI and unit staffing (patient to nurse ratio). The strongest positive correlation was found between illness DRG and mortality DRG, validating our methodology.^ Conclusion. From this analysis, we were able to infer that non-traditional risk factors do not appear to play a significant role in transmission of infection in the units we evaluated.^
Resumo:
Diabetes mellitus occurs in two forms, insulin-dependent (IDDM, formerly called juvenile type) and non-insulin dependent (NIDDM, formerly called adult type). Prevalence figures from around the world for NIDDM, show that all societies and all races are affected; although uncommon in some populations (.4%), it is common (10%) or very common (40%) in others (Tables 1 and 2).^ In Mexican-Americans in particular, the prevalence rates (7-10%) are intermediate to those in Caucasians (1-2%) and Amerindians (35%). Information about the distribution of the disease and identification of high risk groups for developing glucose intolerance or its vascular manifestations by the study of genetic markers will help to clarify and solve some of the problems from the public health and the genetic point of view.^ This research was designed to examine two general areas in relation to NIDDM. The first aims to determine the prevalence of polymorphic genetic markers in two groups distinguished by the presence or absence of diabetes and to observe if there are any genetic marker-disease association (univariate analysis using two by two tables and logistic regression to study the individual and joint effects of the different variables). The second deals with the effect of genetic differences on the variation in fasting plasma glucose and percent glycosylated hemoglobin (HbAl) (analysis of Covariance for each marker, using age and sex as covariates).^ The results from the first analysis were not statistically significant at the corrected p value of 0.003 given the number of tests that were performed. From the analysis of covariance of all the markers studied, only Duffy and Phosphoglucomutase were statistically significant but poor predictors, given that the amount they explain in terms of variation in glycosylated hemoglobin is very small.^ Trying to determine the polygenic component of chronic disease is not an easy task. This study confirms the fact that a larger and random or representative sample is needed to be able to detect differences in the prevalence of a marker for association studies and in the genetic contribution to the variation in glucose and glycosylated hemoglobin. The importance that ethnic homogeneity in the groups studied and standardization in the methodology will have on the results has been stressed. ^