949 resultados para Multi-site
Resumo:
Environment Bay of Plenty Commissioned GNS Science to measure nitrogen and phosphorus concentrations in rainfalla nd rainfall recharge to groundwater at the Kaharoa rainfall recharge site. The aim of this work is to determine nutrient concentrations in rainfall recharge to groundwater and rainfall under pasoral land use.
Resumo:
This report presents learnings, case studies, guidelines and resources for non-government organisations that are planning to implement shared or collaborative arrangements with other agencies. It summarises results from an evaluation of the implementation phase of the Multi-Tenant Service Centre (MTSC) Pilots Project, which was completed in June 2008. This evaluation shows that developing and implementing shared and collaborative arrangements is a complex process that presents many risks, challenges and barriers to success, but can have many potential benefits for non government organisations. As this report makes clear, there is no ‘one size fits all’ approach to this process. The MTSC Pilots Project was conducted by the Department of Communities (DoC), Queensland Government, as part of its Strengthening Non-Government Organisations strategy. The objective of the MTSC Pilots initiative was to co-locate separate service providers in an appropriately located centre, operating with effective and transparent management, which enabled service providers to improve client services. Three MTSC consortiums in Mackay, Caboolture and Toowoomba were selected as the pilots over a four year period from 2006 – 2010.
Resumo:
Computational neuroscience aims to elucidate the mechanisms of neural information processing and population dynamics, through a methodology of incorporating biological data into complex mathematical models. Existing simulation environments model at a particular level of detail; none allow a multi-level approach to neural modelling. Moreover, most are not engineered to produce compute-efficient solutions, an important issue because sufficient processing power is a major impediment in the field. This project aims to apply modern software engineering techniques to create a flexible high performance neural modelling environment, which will allow rigorous exploration of model parameter effects, and modelling at multiple levels of abstraction.
Resumo:
Neu-Model, an ongoing project aimed at developing a neural simulation environment that is extremely computationally powerful and flexible, is described. It is shown that the use of good Software Engineering techniques in Neu-Model’s design and implementation is resulting in a high performance system that is powerful and flexible enough to allow rigorous exploration of brain function at a variety of conceptual levels.
Resumo:
Effective fuel injector operation and efficient combustion are two of the most critical aspects when Diesel engine performance, efficiency and reliability are considered. Indeed, it is widely acknowledged that fuel injection equipment faults lead to increased fuel consumption, reduced power, greater levels of exhaust emissions and even unexpected engine failure. Previous investigations have identified fuel injector related acoustic emission activity as being caused by mechanisms such as fuel line pressure build-up; fuel flow through injector nozzles, injector needle opening and closing impacts and premixed combustion related pulses. Few of these investigations however, have attempted to categorise the close association and interrelation that exists between fuel injection equipment function and the acoustic emission generating mechanisms. Consequently, a significant amount of ambiguity remains in the interpretation and categorisation of injector related AE activity with respect to the functional characteristics of specific fuel injection equipment. The investigation presented addresses this ambiguity by detailing a study in which AE signals were recorded and analysed from two different Diesel engines employing the two commonly encountered yet fundamentally different types of fuel injection equipment. Results from tests in which faults were induced into fuel injector nozzles from both indirect-injection and direct-injection engines show that functional differences between the main types of fuel injection equipment results in acoustic emission activity which can be specifically related to the type of fuel injection equipment used.
Resumo:
In the health care industry, Job Satisfaction (JS) is linked with work performance, psychological well-being and employee turnover. Although research into JS among health professionals has a long history worldwide, there has been very little analysis in Vietnam. No study has addressed JS of preventive medicine workers in Vietnam, and there is no reliable and valid instrument in Vietnamese language and context for evaluation of JS in this group. This project was conducted to fill these gaps. The findings contribute evidence regarding factors that influence JS in this sector of the health industry that should be applied to personnel management policies and practices in Vietnam.
Resumo:
The commercialization of aerial image processing is highly dependent on the platforms such as UAVs (Unmanned Aerial Vehicles). However, the lack of an automated UAV forced landing site detection system has been identified as one of the main impediments to allow UAV flight over populated areas in civilian airspace. This article proposes a UAV forced landing site detection system that is based on machine learning approaches including the Gaussian Mixture Model and the Support Vector Machine. A range of learning parameters are analysed including the number of Guassian mixtures, support vector kernels including linear, radial basis function Kernel (RBF) and polynormial kernel (poly), and the order of RBF kernel and polynormial kernel. Moreover, a modified footprint operator is employed during feature extraction to better describe the geometric characteristics of the local area surrounding a pixel. The performance of the presented system is compared to a baseline UAV forced landing site detection system which uses edge features and an Artificial Neural Network (ANN) region type classifier. Experiments conducted on aerial image datasets captured over typical urban environments reveal improved landing site detection can be achieved with an SVM classifier with an RBF kernel using a combination of colour and texture features. Compared to the baseline system, the proposed system provides significant improvement in term of the chance to detect a safe landing area, and the performance is more stable than the baseline in the presence of changes to the UAV altitude.