930 resultados para Molecular-weight Heparin
Resumo:
A RNase of Aspergillus flavipes (IZ:1501) was purified from culture medium by chromatography on DEAE-cellulose and Sephadex G50 columns, after 96 h of cultivation. The molecular weight of the RNase was estimated to be 15 kD by gel filtration using Sephadex G100, and the optimum pH and temperature were 4.0 and 55 degrees C, respectively. Catalytic activity was inhibited by Hg2+, Ag+, Fe3+, Co2+ and Zn2+. The enzyme showed guanosine specificity producing only 3'-GMP from yeast RNA.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The pectinolytic enzyme obtained from Penicillium viridicatum RFC by solid-state fermentation was purified to homogeneity by pretreatment with kaolin (40 mg mL(-1) ) and ultrafiltration. followed by chromatography on a Sephadex G50 column. The apparent molecular weight of the enzyme was 24 kDa. Maximal activity occurred at pH 6.0 and at 60 degrees C. The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of highly esterified pectin. The presence of 10 mM Ba2+ increased the enzyme activity by 96% and its thermal stability by 30%. besides increasing its stability at acid pH. The apparent K-m with apple pectin as substrate was 1.82 mg mL(-1) and the V-max was 81 mu mol min(-1). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
psi-Condensation of DNA fragments of about 4 kbp was induced by poly(ethylene glycol) (PEG), with degrees of polymerization ranging from 45 to 182, and univalent salt (NaCl). Using circular dichroism spectroscopy, we were able to accurately determine the critical amount of PEG needed to induce condensation, as a function of the NaCl concentration. A significant dependence on the PEG degree of polymerization was found. Phase boundaries determined for the multimolecular condensation were very similar to those observed previously for the monomolecular collapse, with two asymptotic regimes at low and high salt concentrations. We analyze our data using a theoretical model that properly takes into account both the polyelectrolyte nature of the DNA and the liquid crystallinity of the condensed phase. The model assumes that all PEG is excluded from the condensates and shows reentrant decondensation only at low salt. We also systematically study reentrant decondensation and find a very strong dependence on PEG molecular weight. At low PEG molecular weight, decondensation occurs at relatively low concentrations of PEG, and over a wide range of salt concentrations. This suggests that in the reentrant decondensation the flexible polymers used are not completely excluded from the condensed phase.
Resumo:
Miliin, a new thiol-dependent serine protease purified from the latex of Euphorbia milii possesses a molecular weight of 79 kDa, an isoelectric point of 4.3 and is optimally active at 60 degrees C in the pH range of and 7.5-11.0. Activity tests indicate that milliin is a thiol-dependent serine protease.
Resumo:
Combined dynamic and static light scattering (DLS, SLS) and cryogenic transmission electron microscopy (cryo-TEM) were used to investigate extruded cationic vesicles of dioctadecyldimethylammonium chloride and bromide (DODAX, X being Cl- or Br-). In salt-free dispersions the mean hydrodynamic diameter, D-h, and the weight average molecular weight, M-w, are larger for DODAB than for DODAC vesicles, and both D-h and M-w increase with the diameter (phi) of the extrusion filter. NaCl (NaBr) decreases (increases) the DODAB (DODAC) vesicle size, reflecting the general trend of DODAB to assemble as larger vesicles than DODAC. The polydispersity index is lower than 0.25, indicating the dispersions are rather polydisperse. Cryo-TEM micrographs show that the smaller vesicles are spherical while the larger ones are oblong or faceted, and the vesicle samples are fairly polydisperse in size and morphology. They also indicate that the vesicle size increases with phi and DODAB assembles as larger vesicles than DODAC. Lens-shaped vesicles were observed in the extruded preparations. Both light scattering and cryo-TEM indicate that the vesicle size is larger or smaller than phi when phi is smaller or larger than the optimal phi* approximate to 200 nm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new lipase from seeds of Pachira aquatica was purified to homogeneity by SDS-PAGE obtaining an enzyme with a molecular weight of approximately 55 kDa. The purified lipase exhibited maximum activity at 40 degrees C and pH 8.0, for an incubation time of 90 min. Concerning temperature stability, at the range from 4 to 50 degrees C, it retained approximately 47% of its original activity for 3 h. The enzyme activity increased in the presence of Ca(++) and Mg(++), but was inhibited by Hg(++), Mn(++), Zn(++), Al(+++) and various oxidizing and reducing agents. The lipase was highly stable in the presence of organic solvents, and its activity was stimulated by methanol. The values of K(m) and V(max) were 1.65 mM and 37.3 mu mol mL(-1) min(-1), respectively, using p-nitrophenylacetate as substrate. The enzyme showed preference for esters of long-chain fatty acids, but demonstrated significant activity against a wide range of substrates.
Resumo:
The partitioning of Green Fluorescent Protein (GFP) in poly(ethylene glycol)/Na-poly(acrylate) aqueous two-phase systems (PEG/NaPA-ATPS) has been investigated. The aqueous two-phase systems are formed by mixing the polymers with a salt and a protein solution. The protein partitioning in the two-phase system was investigated at 25 degrees C. The concentration of the GFP was measured by fluorimetry. It was found that the partitioning of GFP depends on the salt type, pH and concentration of PEG. The data indicates that GFP partitions more strongly to the PEG phase in presence of Na2SO4 relative to NaCl. Furthermore, the GFP partitions more to the PEG phase at higher pH. The partition to the PEG phase is strongly favoured in systems with larger tie-line lengths (i.e. systems with higher polymer concentrations). The molecular weight of PEG is important since the partition coefficient (K) of GFP gradually decreases with increasing PEG size, from K ca. 300-400 for PEG 400 to K equal to 1.19 for PEG 8000. A separation process was developed where GFP was separated from a homogenate in two extraction steps: the GFP is first partitioned to the PEG phase in a PEG 3000/NaPA 8000 system containing 3 wt% Na2SO4, where the K value of GFP was 8. The GFP is then re-extracted to a salt phase formed by mixing the previous top-phase with a Na2SO4 solution. The K-value of GFP in this back-extraction was 0.22. The total recovery based on the start material was 74%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Phase diagrams of poly(ethylene glycol)/polyacrylate/Na2SO4 systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coil can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coil homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na2SO4-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Dextrans (M-W = 11.000 and M-w = 40.000) have been modified with 4-hexyl benzoyl chloride and their aggregation behavior was studied in aqueous solution employing the fluorescent probes pyrene and 1,8 anilinonaphtalene sulfonic acid sodium salt (1,8 ANS). The photophysical studies showed that above a critical concentration the derivatives tend to form aggregates having different properties, which depend on both the degree of substitution (alpha) and the molecular weight of the sample. The parameter alpha has a marked effect on the critical aggregation concentrations (CAC) and aggregate proper-ties. Hydrophobic microenvironments can be detected for substituted dextrans having alpha values varying from 0.01 to 0.19. CAC values decreased by two orders and magnitude when the molecular weight increased from 11 to 40 kDa, leading to formation of more apolar aggregates and diminishing by about 30% the polarity of the microenviromnents. Pre-aggregation was evidenced by pyrene excimer emission and intermolecular interactions were responsible by the formation of aggregates leading to solution behaviour similar to that of common surfactants. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O presente trabalho caracteriza a região 3'-terminal do genoma de um isolado do Southern bean mosaic virus encontrado no Estado de São Paulo (SBMV-SP). O RNA foi extraído de partículas virais purificadas e submetido a RT-PCR usando oligonucleotídeos desenhados para amplificar 972 nt da região 3'-terminal do RNA viral. Foi obtido fragmento de tamanho esperado que inclui o gene da proteína capsidial e a região 3'-terminal não codificadora. O gene da proteína capsidial (ORF4) contém 801 nucleotídeos, incluindo-se o códon de terminação UGA, com seqüência deduzida de 266 aminoácidos e massa molecular estimada de 28.800 Da. Sessenta e um aminoácidos terminais da ORF2 estão sobrepostos na ORF4. O sinal de localização nuclear, encontrado dentro do Domínio R na região 5'-terminal da ORF4 de alguns sobemovírus, não foi identificado no SBMV-SP. Esse dado pode explicar a ausência de partículas virais do SBMV-SP no núcleo celular. A seqüência do SBMV-SP apresentou identidade de nucleotídeos e aminoácidos de, respectivamente, 91% e 93% com o isolado Arkansas (SBMV-ARK) descrito nos EUA. Os resultados obtidos indicam que o SBMV-SP e o SBMV-ARK são isolados muito proximamente relacionados.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cellulose can be obtained from innumerable sources such as cotton, trees, sugar cane bagasse, wood, bacteria, and others. The bacterial cellulose (BC) produced by the Gram-negative acetic-acid bacterium Acetobacter xylinum has several unique properties. This BC is produced as highly hydrated membranes free of lignin and hemicelluloses and has a higher molecular weight and higher crystallinity. Here, the thermal behavior of BC, was compared with those of microcrystalline (MMC) and vegetal cellulose (VC). The kinetic parameters for the thermal decomposition step of the celluloses were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and at heating rates of 5, 10, and 20 A degrees C/min, the E(alpha) and B(alpha) terms could be determined and consequently the pre-exponential factor A(alpha) as well as the kinetic model g(alpha). The pyrolysis of celluloses followed kinetic model g(alpha) = [-ln(1 - alpha)](1.63) on average, characteristic for Avrami-Erofeev with only small differences in activation energy. The fractional value of n may be related to diffusion-controlled growth, or may arise from the distributions of sizes or shapes of the reactant particles.