918 resultados para Models of QWL
Resumo:
Activation of 5-HT1A receptors in the dorsal periaqueductal gray (dPAG) impairs escape behavior, suggesting a panicolytic-like effect. Cannabidiol (CBD), a major non-psychotomimetic compound present in Cannabis sativa, causes anxiolytic-like effects after intra-dPAG microinjections by activating 5-HT1A receptors. In the present work we tested the hypothesis that CBD could also impair escape responses evoked by two proposed animal models of panic: the elevated T-maze (ETM) and electric stimulation of dPAG. In experiment 1 male Wistar rats with a single cannula implanted in the dPAG received a microinjection of CBD or vehicle and, 10 min later, were submitted to the ETM and open field tests. In experiment 2 escape electrical threshold was measured in rats with chemitrodes implanted in the dPAG before and 10 min after CBD microinjection. In experiment 3 similar to experiment 2 except that the animals received a previous intra-dPAG administration of WAY-100635, a 5-HT1A receptor antagonist, before CBD treatment. In the ETM microinjection of CBD into the dPAG impaired inhibitory avoidance acquisition, an anxiolytic-like effect, and inhibited escape response, a panicolytic-like effect. The drug also increased escape electrical threshold, an effect that was prevented by WAY-100635. Together, the results suggest that CBD causes panicolytic effects in the dPAG by activating 5-HT1A receptors. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE We investigated the effect of the phosphodiesterase-5 inhibitor, tadalafil, on the acute hypernociception in rat models of arthritis. EXPERIMENTAL APPROACH Rats were treated with either an intra-articular injection of zymosan (1 mg) or surgical transection of the anterior cruciate ligament (as an osteoarthritis model). Controls received saline intra-articular or sham operation respectively. Joint pain was evaluated using the articular incapacitation test measured over 6 h following zymosan or between 4 and 7 days after anterior cruciate ligament transection. Cell counts, tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1), and the chemokine, cytokine-induced neutrophil chemoattractant-1 (CINC-1) were measured in joint exudates 6 h after zymosan. Groups received tadalafil (0.02-0.5 mg.kg(-1) per os) or saline 2 h after intra-articular zymosan. Other groups received the mu-opioid receptor antagonist naloxone or the cGMP inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ) before tadalafil. KEY RESULTS Tadalafil dose-dependently inhibited hypernociception in zymosan and osteoarthritis models. In zymosan-induced arthritis, tadalafil significantly decreased cell influx and TNF-alpha release but did not alter IL-1 or CINC-1 levels. Pretreatment with ODQ but not with naloxone prevented the anti-inflammatory effects of tadalafil. CONCLUSIONS AND IMPLICATIONS Therapeutic oral administration of tadalafil provided analgesia mediated by guanylyl cyclase and was independent of the release of endogenous opioids. This effect of tadalafil was associated with a decrease in neutrophil influx and TNF-alpha release in inflamed joints.
Resumo:
The aims of this study were to characterize the spatial distribution of neurodegeneration after status epilepticus (SE) induced by either systemic (S) or intrahippocampal (H) injection of pilocarpine (PILO), two models of temporal lobe epilepsy (TLE), using FluoroJade (FJ) histochemistry, and to evaluate the kinetics of FJ staining in the H-PILO model. Therefore, we measured the severity of behavioral seizures during both types of SE and also evaluated the FJ staining pattern at 12, 24, and 168 h (7 days) after the H-PILO insult. We found that the amount of FJ-positive (FJ+) area was greater in SE induced by S-PILO as compared to SE induced by H-PILO. After SE induced by H-PILO, we found more FJ+ cells in the hilus of the dentate gyrus (DG) at 12 h, in CA3 at 24 h, and in CA1 at 168 h. We found also no correlation between seizure severity and the number of FJ+ cells in the hippocampus. Co-localization studies of FJ+ cells with either neuronal-specific nuclear protein (NeuN) or glial fibrillary acidic protein (GFAP) labeling 24 h after H-PILO demonstrated spatially selective neurodegeneration. Double labeling with FJ and parvalbumin (PV) showed both FJ+/PV+ and FJ+/PV- cells in hippocampus and entorhinal cortex, among other areas. The current data indicate that FJ+ areas are differentially distributed in the two TLE models and that these areas are greater in the S-PILO than in the H-PILO model. There is also a selective kinetics of FJ+ cells in the hippocampus after SE induced by H-PILO, with no association with the severity of seizures, probably as a consequence of the extra-hippocampal damage. These data point to SE induced by H-PILO as a low-mortality model of TLE, with regional spatial and temporal patterns of FJ staining. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background. Cisplatin (CP)-induced renal damage is associated with inflammation. Hydrogen sulphide (H(2)S) is involved in models of inflammation. This study evaluates the effect of DL-propargylglycine (PAG), an inhibitor of endogenous H(2)S formation, on the renal damage induced by CP. Methods. The rats were injected with CP (5 mg/kg, i.p.) or PAG(5 mg/kg twice a day, i.p.) for 4 days, starting 1 h before CP injection. Control rats were injected with 0.15 M NaCl or PAG only. Blood and urine samples were collected 5 days after saline or CP injections for renal function evaluation. The kidneys were removed for tumour necrosis factor (TNF)-alpha quantification, histological, immunohistochemical and Western blot analysis. The cystathionine gamma-lyase (CSE) activity and expression were assessed. The direct toxicity of H(2)S in renal tubular cells was evaluated by the incubation of these cells with NaHS, a donor of H(2)S. Results. CP-treated rats presented increases in plasma creatinine levels and in sodium and potassium fractional excretions associated with tubulointerstitial lesions in the outer medulla. Increased expression of TNF-alpha, macrophages, neutrophils and T lymphocytes, associated with increased H(2)S formation rate and CSE expression, were also observed in the outer medulla from CP-injected rats. All these alterations were reduced by treatment with PAG. A direct toxicity of NaHS for renal tubular epithelial cells was not observed. Conclusions. Treatment with PAG reduces the renal damage induced by CP. This effect seems to be related to the H2S formation and the restriction of the inflammation in the kidneys from PAG+CP-treated rats.
Resumo:
Neuropathic pain is a chronic disease resulting from dysfunction of the nervous system often due to peripheral nerve injury. Hypersensitivity to sensory Stimuli (mechanical, thermal or chemical) is a common source of pain in patients and ion channels involved in detecting these Stimuli are possible candidates for inducing and/or maintaining the pain. Transient receptor potential (TRP) channels expressed on nociceptors respond to different sensory stimuli and a few of them have been studied previously in the models of neuropathic pain. Using real-time PCR for quantification of all known TRP channels we identified several TRP channels, which have not been associated with nociception OF neuropathic pain before, to be expressed in the DRG and to be differentially regulated after spared nerve injury (SNI). Of all TRP channel members, TRPML3 showed the most dramatic change in animals exhibiting neuropathic pain behaviour compared to control animals. fit situ hybridisation showed a widespread increase of expression ill neurons of small, medium and large cell sizes, indicating expression ill multiple subtypes. Co-localisation of TRPML3 with CGRP, NF200 and IB4 staining confirmed a broad Subtype distribution. Expression studies during development showed that TRPML3 is all embryonic channel that is induced upon nerve injury in three different nerve injury models investigated. Thus. the current results link for the first time a re-expression of TRPML3 with the development of neuropathic pain conditions. In addition, decreased mRNA levels after SNI were seen for TRPM6, TRPM8, TRPV1, TRPA1, TRPC3, TRPC4 and TRPC5. (C) 2009 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Different routes for the administration of bone marrow-derived cells (BMDC) have been proposed to treat the progression of chronic renal failure (CRF). We investigated whether (1) the use of bovine pericardium (BP) as a scaffold for cell therapy would retard the progression of CAF and (2) the efficacy of cell therapy differently impacts distinct degrees of CRF. We used 2/3 and 5/6 models of renal mass reduction to simulate different stages of chronicity. Treatments consisted of BP seeded with either mesenchymal or mononuclear cells implanted in the parenchyma of remnant kidney. Renal function and proteinuria were measured at days 45 and 90 after cell implantation. BMDC treatment reduced glomerulosclerosis, interstitial fibrosis and lymphocytic infiltration. Immunohistochemistry showed decreased macrophage accumulation, proliferative activity and the expression of fibronectin and alpha-smooth muscle-actin. Our results demonstrate: (1) biomaterial combined with BMDC did retard the progression of experimental CRF; (2) cellular therapy stabilized serum creatinine (sCr), improved creatinine clearance and 1/sCr slope when administered during the less severe stages of CRF; (3) treatment with combined therapy decreased glomerulosclerosis, fibrosis and the expression of fibrogenic molecules; and (4) biomaterials seeded with BMDC can be an alternative route of cellular therapy.
Resumo:
The genus Schistosoma is composed of blood flukes that infect vertebrates, from which three species are major causative agents of human schistosomiasis, a tropical disease that affects more than 200 million people. Current models of the recent evolution of Schistosoma indicate multiple events of migration and speciation from an Asian ancestral species. Transposable elements are important drivers of genome evolution and have been hypothesised to have an important role in speciation. In this work, we describe a comprehensive inventory of Schistosoma mansoni and Schistosoma japonicum retrotransposons, based on their recently published genomic data. We find a considerable difference in retrotransposon representation between the two species (22% and 13%, respectively). A large part of this difference can be attributed to higher representation of two previously described families of S. mansoni retrotransposons (SR2 and Perere-3/SR3), compared with the representation of their closest relative families in S. japonicum. A more detailed analysis suggests that these two S. mansoni families were the subject of recent bursts of transposition that were not paralleled by their S. japonicum counterparts. We hypothesise that these bursts could be a consequence of the evolutionary pressure resulting from migration of Schistosoma from Asia to Africa and their establishment in this new environment, helping both speciation and adaptation. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Muscle degenerative diseases such as Duchenne Muscular Dystrophy are incurable and treatment options are still restrained. Understanding the mechanisms and factors responsible for muscle degeneration and regeneration will facilitate the development of novel therapeutics. Several recent studies have demonstrated that Galectin-1 (Gal-1), a carbohydrate-binding protein, induces myoblast differentiation and fusion in vitro, suggesting a potential role for this mammalian lectin in muscle regenerative processes in vivo. However, the expression and localization of Gal-1 in vivo during muscle injury and repair are unclear. We report the expression and localization of Gal-1 during degenerative-regenerative processes in vivo using two models of muscular dystrophy and muscle injury. Gal-1 expression increased significantly during muscle degeneration in the murine mdx and in the canine Golden Retriever Muscular Dystrophy animal models. Compulsory exercise of mdx mouse, which intensifies degeneration, also resulted in sustained Gal-1 levels. Furthermore, muscle injury of wild-type C57BL/6 mice, induced by BaCl(2) treatment, also resulted in a marked increase in Gal-1 levels. Increased Gal-1 levels appeared to localize both inside and outside the muscle fibers with significant extracellular Gal-1 colocalized with infiltrating CD45(+) leukocytes. By contrast, regenerating muscle tissue showed a marked decrease in Gal-1 to baseline levels. These results demonstrate significant regulation of Gal-1 expression in vivo and suggest a potential role for Gal-1 in muscle homeostasis and repair.
Resumo:
Snake venom C-type lectin-like proteins (CLPs) are ubiquitously found in Viperidae snake venoms and differ from the C-type lectins as they display different biological activities but no carbohydrate-binding activity. Previous analysis of the transcriptome obtained from the Bothrops insularis venom gland showed the presence of two clusters homologous to bothrojaracin (BJC) chains a and P. In an effort to identify a new BJC-like molecule, we used an approach associated with proteomic technologies to identify the presence of the expressed protein and then to purify and characterize a new thrombin inhibitor from B. insularis venom. We also constructed homology models of this protein and BJC, which were compared with other C-type lectin-like family members and revealed several conserved features of this intriguing snake venom toxin family. (C)0 2007 Elsevier Ltd. All rights reserved.
Resumo:
This study was undertaken to test whether the structural remodelling of pulmonary parenchyma can be sequentially altered in a model and method that demonstrate the progression of the disease and result in remodelling within the lungs that is typical of idiopathic pulmonary fibrosis. Three groups of mice were studied: (i) animals that received 3-5-di-tert-butyl-4-hydroxytoluene (BHT) and were killed after 2 weeks (early BHT = 9); (ii) animals that received BHT and were killed after 4 weeks (late BHT = 11); (iii) animals that received corn oil solution (control = 10). The mice were placed in a ventilated Plexiglas chamber with a mixture of pure humidified oxygen and compressed air. Lung histological sections underwent haematoxylin-eosin, immunohistochemistry (epithelial, endothelial and immune cells) and specific staining (collagen/elastic fibres) methods for morphometric analysis. When compared with the control group, early BHT and late BHT groups showed significant decrease of type II pneumocytes, lower vascular density in both and higher endothelial activity. CD4 was increased in late BHT compared with early and control groups, while CD8, macrophage and neutrophil cells were more prominent only in early BHT. The collagenous fibre density were significantly higher only in late BHT, whereas elastic fibre content in late BHT was lower than that in control group. We conclude that the BHT experimental model is pathologically very similar to human usual interstitial pneumonia. This feature is important in the identification of animal models of idiopathic pulmonary fibrosis that can accurately reflect the pathogenesis and progression of the human disease.
Resumo:
Overproduction or underregulation of the proinflammatory complement component C5a has been implicated in numerous immune and inflammatory conditions. Therefore, targeting the C5a receptor (C5aR) has become an innovative strategy for antiinflammatory drug development. The novel cyclic peptide C5aR antagonist, AcF-[OP(D-Cha)WR] (PMX53), attenuates injury in numerous animal models of inflammation following intravenous, subcutaneous, intraperitoneal, and oral administration. In the present study the transdermal pharmacology of PMX53 and three analogs designed with increased lipophilicity, hydrocinnamate-[OP(D-Cha)WCit] (PMX200), AcF-[OP(D-Cha)WCit] (PMX201) and hydrocinnamate-[OP(D-Cha)WR] (PMX205), have been examined in order to assess their transdermal permeability and inhibitory effect on C5a-mediated lipopolysaccharide (LPS)-induced systemic responses. In the rat, PMX53, PMX201, and PMX205, were bioavailable following topical dermal administration (10 mg/50 cm(2) site/rat). All analogs functionally antagonized neutropenia and hypotension induced by systemic challenge with LPS (I mg/kg i.v.). Interestingly, PMX200 attenuated LPS-induced neutropenia more effectively than other analogs, despite undetectable (< 5 ng/ml) circulating levels following topical administration. In conclusion, we have demonstrated that cyclic peptide C5aR antagonists can penetrate transdermally sufficiently to have systemic effects. However, increasing lipophilicity in these compounds did not result in increased blood levels. Nonetheless, topical application of C5aR antagonists produced circulating levels of the drugs that antagonized the LPS-induced systemic responses of neutropenia and hypotension. This suggests that these small-molecule C5aR antagonists may be developed for topical administration for the treatment of local and systemic inflammatory conditions in the human and veterinary pharmaceutical markets.
Resumo:
Objectives: The effects of short-term 5-day and long-term 30-day hyperprolactinemia induced by domperidone (1.7 mg/kg/day, s.c.) or ectopic pituitary graft on the acute inflammatory response induced by carrageenan were evaluated in male rats. Both models of hyperprolactinemia effectively increased serum prolactin (PRL) levels. Methods: The volume in milliliters of inflammatory edema was measured by plethysnnography 1, 2, 3, 4, 6, 8 and 24 h after carrageenan injection. The areas under the inflammatory time-response curves were compared. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Results: In both domperidone-treated and pituitary graft-implanted animals, short-term 5-day hyperprolactinemia increased the inflammatory response, while long-term 30-day hyperprolactinemia had anti-inflammatory effects. Body weight was not affected by either short- or long-term hyperprolactinennia. Conclusion: These results show that PRL has biphasic effects on the carrageenan-induced inflammatory response. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Purpose: The aim of this research was to assess the dimensional accuracy of orbital prostheses based on reversed images generated by computer-aided design/computer-assisted manufacturing (CAD/CAM) using computed tomography (CT) scans. Materials and Methods: CT scans of the faces of 15 adults, men and women older than 25 years of age not bearing any congenital or acquired craniofacial defects, were processed using CAD software to produce 30 reversed three-dimensional models of the orbital region. These models were then processed using the CAM system by means of selective laser sintering to generate surface prototypes of the volunteers` orbital regions. Two moulage impressions of the faces of each volunteer were taken to manufacture 15 pairs of casts. Orbital defects were created on the right or left side of each cast. The surface prototypes were adapted to the casts and then flasked to fabricate silicone prostheses. The establishment of anthropometric landmarks on the orbital region and facial midline allowed for the data collection of 31 linear measurements, used to assess the dimensional accuracy of the orbital prostheses and their location on the face. Results: The comparative analyses of the linear measurements taken from the orbital prostheses and the opposite sides that originated the surface prototypes demonstrated that the orbital prostheses presented similar vertical, transversal, and oblique dimensions, as well as similar depth. There was no transverse or oblique displacement of the prostheses. Conclusion: From a clinical perspective, the small differences observed after analyzing all 31 linear measurements did not indicate facial asymmetry. The dimensional accuracy of the orbital prostheses suggested that the CAD/CAM system assessed herein may be applicable for clinical purposes. Int J Prosthodont 2010;23:271-276.
Resumo:
Purpose The aim of this study was to evaluate the ability of bond strength tests to accurately measure the bond strength of fiber posts luted into root canals Materials and Methods The test methods studied were hourglass microtensile (HM), push-out (PS), modified push out (MP) and pull out (PL) The evaluated parameters were bond strength values, reliability (using Weibull analysis), failure mode (using confocal microscopy), and stress distribution (using finite element analysis) Forty human intact single rooted and endodontically treated teeth were divided into four groups Each group was assigned one of the test methods The samples in the HM and PS groups were 1 0 +/- 0 1 mm thick, the HM samples were hourglass shaped and the PS samples were disk shaped For the PL and MP groups, each 1 mm dentin slice was luted with a fiber post piece Three dimensional models of each group were made and stress was analyzed based on Von Mises criteria Results PL provided the highest values of bond strength followed by MP both of which also had greater amounts of adhesive failures PS showed the highest frequency of cohesive failures MP showed a more homogeneous stress distribution and a higher Weibull modulus Conclusion The specimen design directly influences the biomechanical behavior of bond strength tests
Resumo:
Introduction: The purpose of this study was to compare the occlusal outcomes and the efficiency of 1-phase and 2-phase treatment protocols in Class II Division 1 malocclusions. Treatment efficiency was defined as a change in the occlusal characteristics in a shorter treatment time. Methods: Class II Division 1 subjects ( n = 139) were divided into 2 groups according to the treatment protocol for Class II correction. Group 1 comprised 78 patients treated with a 1-phase treatment protocol at initial and final mean ages of 12.51 and 14.68 years. Group 2 comprised 61 patients treated with a 2-phase treatment protocol at initial and final mean ages of 11.21 and 14.70 years. Lateral cephalometric radiographs were taken at the pretreatment stage to evaluate morphological differences in the groups. The initial and final study models of the patients were evaluated by using the peer assessment rating index. Chi-square tests were used to test for differences between the 2 groups for categorical variables. Variables regarding occlusal results were compared by using independent t tests. A linear regression analysis was completed, with total treatment time as the dependent variable, to identify clinical factors that predict treatment length for patients with Class II malocclusions. Results: Similar occlusal outcomes were obtained between the 1-phase and the 2-phase treatment protocols, but the duration of treatment was significantly shorter in the 1-phase treatment protocol group. Conclusions: Treatment of Class II Division 1 malocclusions is more efficient with the 1-phase than the 2-phase treatment protocol.