967 resultados para Modeling methods
Resumo:
Trabalho de Dissertação de natureza científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
The handling of waste and compost that occurs frequently in composting plants (compost turning, shredding, and screening) has been shown to be responsible for the release of dust and air borne microorganisms and their compounds in the air. Thermophilic fungi, such as A. fumigatus, have been reported and this kind of contamination in composting facilities has been associated with increased respiratory symptoms among compost workers. This study intended to characterize fungal contamination in a totally indoor composting plant located in Portugal. Besides conventional methods, molecular biology was also applied to overcome eventual limitations.
Resumo:
OBJECTIVE: To estimate the basic reproduction number (R0) of dengue fever including both imported and autochthonous cases. METHODS: The study was conducted based on epidemiological data of the 2003 dengue epidemic in Brasília, Brazil. The basic reproduction number is estimated from the epidemic curve, fitting linearly the increase of initial cases. Aiming at simulating an epidemic with both autochthonous and imported cases, a "susceptible-infectious-resistant" compartmental model was designed, in which the imported cases were considered as an external forcing. The ratio between R0 of imported versus autochthonous cases was used as an estimator of real R0. RESULTS: The comparison of both reproduction numbers (only autochthonous versus all cases) showed that considering all cases as autochthonous yielded a R0 above one, although the real R0 was below one. The same results were seen when the method was applied on simulated epidemics with fixed R0. This method was also compared to some previous proposed methods by other authors and showed that the latter underestimated R0 values. CONCLUSIONS: It was shown that the inclusion of both imported and autochthonous cases is crucial for the modeling of the epidemic dynamics, and thus provides critical information for decision makers in charge of prevention and control of this disease.
Resumo:
Tourism contributes to the development of many regions. Different factors affect the movement of tourists within a destination. Those factors are related to the tourist characteristics, like the time budgets, preferences or destination knowledge, and to the destination features, like the attraction characteristics or accessibility level. Tourist decisions aren’t always done in a rational way. Emotions add further complexity to the human decision process. The use of footpaths can play an important role in the satisfaction of tourists, helping them discover the territory and giving them access to different types of attractions. The existence of a mathematical model that integrates the main factors related to the movement of independent tourists within a destination, in a dynamic way, will make possible the creation of an adaptable software tool. This tool will meet the specific needs of tourists, allowing the use of the network in an optimal way by the different tourist profiles, and the needs of the regional government and business, permitting better decisions and the offer of relevant tourism products. This article identifies the main tourists’ mobility criteria in the São Miguel island territory, Azores, Portugal, recognizes the necessary modelling process and identifies the basis for the construction of the mathematical model that explains the movement of tourists within the destination.
Resumo:
A navegação de veículos autónomos em ambientes não estruturados continua a ser um problema em aberto. A complexidade do mundo real ainda é um desafio. A difícil caracterização do relevo irregular, dos objectos dinâmicos e pouco distintos(e a inexistência de referências de localização) tem sido alvo de estudo e do desenvolvimento de vários métodos que permitam de uma forma eficiente, e em tempo real, modelizar o espaço tridimensional. O trabalho realizado ao longo desta dissertação insere-se na estratégia do Laboratório de Sistemas Autónomos (LSA) na pesquisa e desenvolvimento de sistemas sensoriais que possibilitem o aumento da capacidade de percepção das plataformas robóticas. O desenvolvimento de um sistema de modelização tridimensional visa acrescentar aos projectos LINCE (Land INtelligent Cooperative Explorer) e TIGRE (Terrestrial Intelligent General proposed Robot Explorer) maior autonomia e capacidade de exploração e mapeamento. Apresentamos alguns sensores utilizados para a aquisição de modelos tridimensionais, bem como alguns dos métodos mais utilizados para o processo de mapeamento, e a sua aplicação em plataformas robóticas. Ao longo desta dissertação são apresentadas e validadas técnicas que permitem a obtenção de modelos tridimensionais. É abordado o problema de analisar a cor e geometria dos objectos, e da criação de modelos realistas que os representam. Desenvolvemos um sistema que nos permite a obtenção de dados volumétricos tridimensionais, a partir de múltiplas leituras de um Laser Range Finder bidimensional de médio alcance. Aos conjuntos de dados resultantes associamos numa nuvem de pontos coerente e referenciada. Foram desenvolvidas e implementadas técnicas de segmentação que permitem inspeccionar uma nuvem de pontos e classifica-la quanto às suas características geométricas, bem como ao tipo de estruturas que representem. São apresentadas algumas técnicas para a criação de Mapas de Elevação Digital, tendo sido desenvolvida um novo método que tira partido da segmentação efectuada
Resumo:
Finding the structure of a confined liquid crystal is a difficult task since both the density and order parameter profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either (i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy minimization. The traditional implementations of both approaches are computationally expensive and plagued with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally realizable but very problematic to conventional theoretical treatments.
Resumo:
The tongue is the most important and dynamic articulator for speech formation, because of its anatomic aspects (particularly, the large volume of this muscular organ comparatively to the surrounding organs of the vocal tract) and also due to the wide range of movements and flexibility that are involved. In speech communication research, a variety of techniques have been used for measuring the three-dimensional vocal tract shapes. More recently, magnetic resonance imaging (MRI) becomes common; mainly, because this technique allows the collection of a set of static and dynamic images that can represent the entire vocal tract along any orientation. Over the years, different anatomical organs of the vocal tract have been modelled; namely, 2D and 3D tongue models, using parametric or statistical modelling procedures. Our aims are to present and describe some 3D reconstructed models from MRI data, for one subject uttering sustained articulations of some typical Portuguese sounds. Thus, we present a 3D database of the tongue obtained by stack combinations with the subject articulating Portuguese vowels. This 3D knowledge of the speech organs could be very important; especially, for clinical purposes (for example, for the assessment of articulatory impairments followed by tongue surgery in speech rehabilitation), and also for a better understanding of acoustic theory in speech formation.
Resumo:
Microarray allow to monitoring simultaneously thousands of genes, where the abundance of the transcripts under a same experimental condition at the same time can be quantified. Among various available array technologies, double channel cDNA microarray experiments have arisen in numerous technical protocols associated to genomic studies, which is the focus of this work. Microarray experiments involve many steps and each one can affect the quality of raw data. Background correction and normalization are preprocessing techniques to clean and correct the raw data when undesirable fluctuations arise from technical factors. Several recent studies showed that there is no preprocessing strategy that outperforms others in all circumstances and thus it seems difficult to provide general recommendations. In this work, it is proposed to use exploratory techniques to visualize the effects of preprocessing methods on statistical analysis of cancer two-channel microarray data sets, where the cancer types (classes) are known. For selecting differential expressed genes the arrow plot was used and the graph of profiles resultant from the correspondence analysis for visualizing the results. It was used 6 background methods and 6 normalization methods, performing 36 pre-processing methods and it was analyzed in a published cDNA microarray database (Liver) available at http://genome-www5.stanford.edu/ which microarrays were already classified by cancer type. All statistical analyses were performed using the R statistical software.
Resumo:
The mechanisms of speech production are complex and have been raising attention from researchers of both medical and computer vision fields. In the speech production mechanism, the articulator’s study is a complex issue, since they have a high level of freedom along this process, namely the tongue, which instigates a problem in its control and observation. In this work it is automatically characterized the tongues shape during the articulation of the oral vowels of Portuguese European by using statistical modeling on MR-images. A point distribution model is built from a set of images collected during artificially sustained articulations of Portuguese European sounds, which can extract the main characteristics of the motion of the tongue. The model built in this work allows under standing more clearly the dynamic speech events involved during sustained articulations. The tongue shape model built can also be useful for speech rehabilitation purposes, specifically to recognize the compensatory movements of the articulators during speech production.
Resumo:
A square-wave voltammetric (SWV) method and a flow injection analysis system with amperometric detection were developed for the determination of tramadol hydrochloride. The SWV method enables the determination of tramadol over the concentration range of 15-75 µM with a detection limit of 2.2 µM. Tramadol could be determined in concentrations between 9 and 50 µM at a sampling rate of 90 h-1, with a detection limit of 1.7 µM using the flow injection system. The electrochemical methods developed were successfully applied to the determination of tramadol in pharmaceutical dosage forms, without any pre-treatment of the samples. Recovery trials were performed to assess the accuracy of the results; the values were between 97 and 102% for both methods.
Resumo:
The aim of this paper is to develop models for experimental open-channel water delivery systems and assess the use of three data-driven modeling tools toward that end. Water delivery canals are nonlinear dynamical systems and thus should be modeled to meet given operational requirements while capturing all relevant dynamics, including transport delays. Typically, the derivation of first principle models for open-channel systems is based on the use of Saint-Venant equations for shallow water, which is a time-consuming task and demands for specific expertise. The present paper proposes and assesses the use of three data-driven modeling tools: artificial neural networks, composite local linear models and fuzzy systems. The canal from Hydraulics and Canal Control Nucleus (A parts per thousand vora University, Portugal) will be used as a benchmark: The models are identified using data collected from the experimental facility, and then their performances are assessed based on suitable validation criterion. The performance of all models is compared among each other and against the experimental data to show the effectiveness of such tools to capture all significant dynamics within the canal system and, therefore, provide accurate nonlinear models that can be used for simulation or control. The models are available upon request to the authors.
Resumo:
In order to combat a variety of pests, pesticides are widely used in fruits. Several extraction procedures (liquid extraction, single drop microextraction, microwave-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, solid-phase extraction, solid-phase microextraction, matrix solid-phase dispersion, and stir bar sorptive extraction) have been reported to determine pesticide residues in fruits and fruit juices. The significant change in recent years is the introduction of the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) methods in these matrices analysis. A combination of techniques reported the use of new extraction methods and chromatography to provide better quantitative recoveries at low levels. The use of mass spectrometric detectors in combination with liquid and gas chromatography has played a vital role to solve many problems related to food safety. The main attention in this review is on the achievements that have been possible because of the progress in extraction methods and the latest advances and novelties in mass spectrometry, and how these progresses have influenced the best control of food, allowing for an increase in the food safety and quality standards.
Resumo:
Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas
Resumo:
The state of the art of voltammetric and amperometric methods used in the study and determination of pesticides in crops, food, phytopharmaceutical products, and environmental samples is reviewed. The main structural groups of pesticides, i.e., triazines, organophosphates, organochlorides, nitrocompounds, carbamates, thiocarbamates, sulfonylureas, and bipyridinium compounds are considered with some degradation products. The advantages, drawbacks, and trends in the development of voltammetric and amperometric methods for study and determination of pesticides in these samples are discussed.
Resumo:
OBJECTIVE: To develop a model to assess different strategies of pertussis booster vaccination in the city of São Paulo. METHODS: A dynamic stationary age-dependent compartmental model with waning immunity was developed. The "Who Acquires Infection from Whom" matrix was used to modeling age-dependent transmission rates. There were tested different strategies including vaccine boosters to the current vaccination schedule and three of them were reported: (i) 35% coverage at age 12, or (ii) 70% coverage at age 12, and (iii) 35% coverage at age 12 and 70% coverage at age 20 at the same time. RESULTS: The strategy (i) achieved a 59% reduction of pertussis occurrence and a 53% reduction in infants while strategy (ii) produced 76% and 63% reduction and strategy (iii) 62% and 54%, respectively. CONCLUSION: Pertussis booster vaccination at age 12 proved to be the best strategy among those tested in this study as it achieves the highest overall reduction and the greatest impact among infants who are more susceptible to pertussis complications.