922 resultados para Mixed model equations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generalized linear mixed models with semiparametric random effects are useful in a wide variety of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP) model, normal base measures and Gibbs sampling procedures based on the Pólya urn scheme are often used to simulate posterior draws. These algorithms are applicable in the conjugate case when (for a normal base measure) the likelihood is normal. In the non-conjugate case, the algorithms proposed by MacEachern and Müller (1998) and Neal (2000) are often applied to generate posterior samples. Some common problems associated with simulation algorithms for non-conjugate MDP models include convergence and mixing difficulties. This paper proposes an algorithm based on the Pólya urn scheme that extends the Gibbs sampling algorithms to non-conjugate models with normal base measures and exponential family likelihoods. The algorithm proceeds by making Laplace approximations to the likelihood function, thereby reducing the procedure to that of conjugate normal MDP models. To ensure the validity of the stationary distribution in the non-conjugate case, the proposals are accepted or rejected by a Metropolis-Hastings step. In the special case where the data are normally distributed, the algorithm is identical to the Gibbs sampler.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generalized linear mixed models (GLMMs) provide an elegant framework for the analysis of correlated data. Due to the non-closed form of the likelihood, GLMMs are often fit by computational procedures like penalized quasi-likelihood (PQL). Special cases of these models are generalized linear models (GLMs), which are often fit using algorithms like iterative weighted least squares (IWLS). High computational costs and memory space constraints often make it difficult to apply these iterative procedures to data sets with very large number of cases. This paper proposes a computationally efficient strategy based on the Gauss-Seidel algorithm that iteratively fits sub-models of the GLMM to subsetted versions of the data. Additional gains in efficiency are achieved for Poisson models, commonly used in disease mapping problems, because of their special collapsibility property which allows data reduction through summaries. Convergence of the proposed iterative procedure is guaranteed for canonical link functions. The strategy is applied to investigate the relationship between ischemic heart disease, socioeconomic status and age/gender category in New South Wales, Australia, based on outcome data consisting of approximately 33 million records. A simulation study demonstrates the algorithm's reliability in analyzing a data set with 12 million records for a (non-collapsible) logistic regression model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In linear mixed models, model selection frequently includes the selection of random effects. Two versions of the Akaike information criterion (AIC) have been used, based either on the marginal or on the conditional distribution. We show that the marginal AIC is no longer an asymptotically unbiased estimator of the Akaike information, and in fact favours smaller models without random effects. For the conditional AIC, we show that ignoring estimation uncertainty in the random effects covariance matrix, as is common practice, induces a bias that leads to the selection of any random effect not predicted to be exactly zero. We derive an analytic representation of a corrected version of the conditional AIC, which avoids the high computational cost and imprecision of available numerical approximations. An implementation in an R package is provided. All theoretical results are illustrated in simulation studies, and their impact in practice is investigated in an analysis of childhood malnutrition in Zambia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We establish a fundamental equivalence between singular value decomposition (SVD) and functional principal components analysis (FPCA) models. The constructive relationship allows to deploy the numerical efficiency of SVD to fully estimate the components of FPCA, even for extremely high-dimensional functional objects, such as brain images. As an example, a functional mixed effect model is fitted to high-resolution morphometric (RAVENS) images. The main directions of morphometric variation in brain volumes are identified and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to develop statistical methodology to facilitate indirect estimation of the concentration of antiretroviral drugs and viral loads in the prostate gland and the seminal vesicle. The differences in antiretroviral drug concentrations in these organs may lead to suboptimal concentrations in one gland compared to the other. Suboptimal levels of the antiretroviral drugs will not be able to fully suppress the virus in that gland, lead to a source of sexually transmissible virus and increase the chance of selecting for drug resistant virus. This information may be useful selecting antiretroviral drug regimen that will achieve optimal concentrations in most of male genital tract glands. Using fractionally collected semen ejaculates, Lundquist (1949) measured levels of surrogate markers in each fraction that are uniquely produced by specific male accessory glands. To determine the original glandular concentrations of the surrogate markers, Lundquist solved a simultaneous series of linear equations. This method has several limitations. In particular, it does not yield a unique solution, it does not address measurement error, and it disregards inter-subject variability in the parameters. To cope with these limitations, we developed a mechanistic latent variable model based on the physiology of the male genital tract and surrogate markers. We employ a Bayesian approach and perform a sensitivity analysis with regard to the distributional assumptions on the random effects and priors. The model and Bayesian approach is validated on experimental data where the concentration of a drug should be (biologically) differentially distributed between the two glands. In this example, the Bayesian model-based conclusions are found to be robust to model specification and this hierarchical approach leads to more scientifically valid conclusions than the original methodology. In particular, unlike existing methods, the proposed model based approach was not affected by a common form of outliers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flammability zone boundaries are very important properties to prevent explosions in the process industries. Within the boundaries, a flame or explosion can occur so it is important to understand these boundaries to prevent fires and explosions. Very little work has been reported in the literature to model the flammability zone boundaries. Two boundaries are defined and studied: the upper flammability zone boundary and the lower flammability zone boundary. Three methods are presented to predict the upper and lower flammability zone boundaries: The linear model The extended linear model, and An empirical model The linear model is a thermodynamic model that uses the upper flammability limit (UFL) and lower flammability limit (LFL) to calculate two adiabatic flame temperatures. When the proper assumptions are applied, the linear model can be reduced to the well-known equation yLOC = zyLFL for estimation of the limiting oxygen concentration. The extended linear model attempts to account for the changes in the reactions along the UFL boundary. Finally, the empirical method fits the boundaries with linear equations between the UFL or LFL and the intercept with the oxygen axis. xx Comparison of the models to experimental data of the flammability zone shows that the best model for estimating the flammability zone boundaries is the empirical method. It is shown that is fits the limiting oxygen concentration (LOC), upper oxygen limit (UOL), and the lower oxygen limit (LOL) quite well. The regression coefficient values for the fits to the LOC, UOL, and LOL are 0.672, 0.968, and 0.959, respectively. This is better than the fit of the "zyLFL" method for the LOC in which the regression coefficient’s value is 0.416.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenylketonuria, an autosomal recessive Mendelian disorder, is one of the most common inborn errors of metabolism. Although currently treated by diet, many suboptimal outcomes occur for patients. Neuropathological outcomes include cognitive loss, white matter abnormalities, and hypo- or demyelination, resulting from high concentrations and/or fluctuating levels of phenylalanine. High phenylalanine can also result in competitive exclusion of other large neutral amino acids from the brain, including tyrosine and tryptophan (essential precursors of dopamine and serotonin). This competition occurs at the blood brain barrier, where the L-type amino acid transporter, LAT1, selectively facilitates entry of large neutral amino acids. The hypothesis of these studies is that certain non-physiological amino acids (NPAA; DL-norleucine (NL), 2-aminonorbornane (NB; 2-aminobicyclo-(2,1,1)-heptane-2-carboxylic acid), α-aminoisobutyrate (AIB), and α-methyl-aminoisobutyrate (MAIB)) would competitively inhibit LAT1 transport of phenylalanine (Phe) at the blood-brain barrier interface. To test this hypothesis, Pah-/- mice (n=5, mixed gender; Pah+/-(n=5) as controls) were fed either 5% NL, 0.5% NB, 5% AIB or 3% MAIB (w/w 18% protein mouse chow) for 3 weeks. Outcome measurements included food intake, body weight, brain LNAAs, and brain monoamines measured via LCMS/MS or HPLC. Brain Phe values at sacrifice were significantly reduced for NL, NB, and MAIB, verifying the hypothesis that these NPAAs could inhibit Phe trafficking into the brain. However, concomitant reductions in tyrosine and methionine occurred at the concentrations employed. Blood Phe levels were not altered indicating no effect of NPAA competitors in the gut. Brain NL and NB levels, measured with HPLC, verified both uptake and transport of NPAAs. Although believed predominantly unmetabolized, NL feeding significantly increased blood urea nitrogen. Pah-/-disturbances of monoamine metabolism were exacerbated by NPAA intervention, primarily with NB (the prototypical LAT inhibitor). To achieve the overarching goal of using NPAAs to stabilize Phe transport levels into the brain, a specific Phe-reducing combination and concentration of NPAAs must be found. Our studies represent the first in vivo use of NL, NB and MAIB in Pah-/- mice, and provide proof-of-principle for further characterization of these LAT inhibitors. Our data is the first to document an effect of MAIB, a specific system A transport inhibitor, on large neutral amino acid transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As an important Civil Engineering material, asphalt concrete (AC) is commonly used to build road surfaces, airports, and parking lots. With traditional laboratory tests and theoretical equations, it is a challenge to fully understand such a random composite material. Based on the discrete element method (DEM), this research seeks to develop and implement computer models as research approaches for improving understandings of AC microstructure-based mechanics. In this research, three categories of approaches were developed or employed to simulate microstructures of AC materials, namely the randomly-generated models, the idealized models, and image-based models. The image-based models were recommended for accurately predicting AC performance, while the other models were recommended as research tools to obtain deep insight into the AC microstructure-based mechanics. A viscoelastic micromechanical model was developed to capture viscoelastic interactions within the AC microstructure. Four types of constitutive models were built to address the four categories of interactions within an AC specimen. Each of the constitutive models consists of three parts which represent three different interaction behaviors: a stiffness model (force-displace relation), a bonding model (shear and tensile strengths), and a slip model (frictional property). Three techniques were developed to reduce the computational time for AC viscoelastic simulations. It was found that the computational time was significantly reduced to days or hours from years or months for typical three-dimensional models. Dynamic modulus and creep stiffness tests were simulated and methodologies were developed to determine the viscoelastic parameters. It was found that the DE models could successfully predict dynamic modulus, phase angles, and creep stiffness in a wide range of frequencies, temperatures, and time spans. Mineral aggregate morphology characteristics (sphericity, orientation, and angularity) were studied to investigate their impacts on AC creep stiffness. It was found that aggregate characteristics significantly impact creep stiffness. Pavement responses and pavement-vehicle interactions were investigated by simulating pavement sections under a rolling wheel. It was found that wheel acceleration, steadily moving, and deceleration significantly impact contact forces. Additionally, summary and recommendations were provided in the last chapter and part of computer programming codes wree provided in the appendixes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospinning (ES) can readily produce polymer fibers with cross-sectional dimensions ranging from tens of nanometers to tens of microns. Qualitative estimates of surface area coverage are rather intuitive. However, quantitative analytical and numerical methods for predicting surface coverage during ES have not been covered in sufficient depth to be applied in the design of novel materials, surfaces, and devices from ES fibers. This article presents a modeling approach to ES surface coverage where an analytical model is derived for use in quantitative prediction of surface coverage of ES fibers. The analytical model is used to predict the diameter of circular deposition areas of constant field strength and constant electrostatic force. Experimental results of polyvinyl alcohol fibers are reported and compared to numerical models to supplement the analytical model derived. The analytical model provides scientists and engineers a method for estimating surface area coverage. Both applied voltage and capillary-to-collection-plate separation are treated as independent variables for the analysis. The electric field produced by the ES process was modeled using COMSOL Multiphysics software to determine a correlation between the applied field strength and the size of the deposition area of the ES fibers. MATLAB scripts were utilized to combine the numerical COMSOL results with derived analytical equations. Experimental results reinforce the parametric trends produced via modeling and lend credibility to the use of modeling techniques for the qualitative prediction of surface area coverage from ES. (Copyright: 2014 American Vacuum Society.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examines the consequences of living in segregated and mixed neighbourhoods on ingroup bias and offensive action tendencies, taking into consideration the role of intergroup experiences and perceived threat. Using adult data from a cross-sectional survey in Belfast, Northern Ireland, we tested a model that examined the relationship between living in segregated (N = 396) and mixed (N = 562) neighbourhoods and positive contact, exposure to violence, perceived threat and outgroup orientations. Our results show that living in mixed neighbourhoods was associated with lower ingroup bias and reduced offensive action tendencies. These effects were partially mediated by positive contact. However, our analysis also shows that respondents living in mixed neighbourhoods report higher exposure to political violence and higher perceived threat to physical safety. These findings demonstrate the importance of examining both social experience and threat perceptions when testing the relationship between social environment and prejudice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For broadcasting purposes MIXED REALITY, the combination of real and virtual scene content, has become ubiquitous nowadays. Mixed Reality recording still requires expensive studio setups and is often limited to simple color keying. We present a system for Mixed Reality applications which uses depth keying and provides threedimensional mixing of real and artificial content. It features enhanced realism through automatic shadow computation which we consider a core issue to obtain realism and a convincing visual perception, besides the correct alignment of the two modalities and correct occlusion handling. Furthermore we present a possibility to support placement of virtual content in the scene. Core feature of our system is the incorporation of a TIME-OF-FLIGHT (TOF)-camera device. This device delivers real-time depth images of the environment at a reasonable resolution and quality. This camera is used to build a static environment model and it also allows correct handling of mutual occlusions between real and virtual content, shadow computation and enhanced content planning. The presented system is inexpensive, compact, mobile, flexible and provides convenient calibration procedures. Chroma-keying is replaced by depth-keying which is efficiently performed on the GRAPHICS PROCESSING UNIT (GPU) by the usage of an environment model and the current ToF-camera image. Automatic extraction and tracking of dynamic scene content is herewith performed and this information is used for planning and alignment of virtual content. An additional sustainable feature is that depth maps of the mixed content are available in real-time, which makes the approach suitable for future 3DTV productions. The presented paper gives an overview of the whole system approach including camera calibration, environment model generation, real-time keying and mixing of virtual and real content, shadowing for virtual content and dynamic object tracking for content planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Mode of inheritance of equine recurrent airway obstruction (RAO) is unknown. HYPOTHESIS: Major genes are responsible for RAO. ANIMALS: Direct offspring of 2 RAO-affected Warmblood stallions (n = 197; n = 163) and a representative sample of Swiss Warmbloods (n = 401). METHODS: One environmental and 4 genetic models (general, mixed inheritance, major gene, and polygene) were tested for Horse Owner Assessed Respiratory Signs Index (1-4, unaffected to severely affected) by segregation analyses of the 2 half-sib sire families, both combined and separately, using prevalences estimated in a representative sample. RESULTS: In all data sets the mixed inheritance model was most likely to explain the pattern of inheritance. In all 3 datasets the mixed inheritance model did not differ significantly from the general model (P= .62, P= 1.00, and P= .27) but was always better than the major gene model (P < .01) and the polygene model (P < .01). The frequency of the deleterious allele differed considerably between the 2 sire families (P= .23 and P= .06). In both sire families the displacement was large (t= 17.52 and t= 12.24) and the heritability extremely large (h(2)= 1). CONCLUSIONS AND CLINICAL RELEVANCE: Segregation analyses clearly reveal the presence of a major gene playing a role in RAO. In 1 family, the mode of inheritance was autosomal dominant, whereas in the other family it was autosomal recessive. Although the expression of RAO is influenced by exposure to hay, these findings suggest a strong, complex genetic background for RAO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed Reality (MR) aims to link virtual entities with the real world and has many applications such as military and medical domains [JBL+00, NFB07]. In many MR systems and more precisely in augmented scenes, one needs the application to render the virtual part accurately at the right time. To achieve this, such systems acquire data related to the real world from a set of sensors before rendering virtual entities. A suitable system architecture should minimize the delays to keep the overall system delay (also called end-to-end latency) within the requirements for real-time performance. In this context, we propose a compositional modeling framework for MR software architectures in order to specify, simulate and validate formally the time constraints of such systems. Our approach is first based on a functional decomposition of such systems into generic components. The obtained elements as well as their typical interactions give rise to generic representations in terms of timed automata. A whole system is then obtained as a composition of such defined components. To write specifications, a textual language named MIRELA (MIxed REality LAnguage) is proposed along with the corresponding compilation tools. The generated output contains timed automata in UPPAAL format for simulation and verification of time constraints. These automata may also be used to generate source code skeletons for an implementation on a MR platform. The approach is illustrated first on a small example. A realistic case study is also developed. It is modeled by several timed automata synchronizing through channels and including a large number of time constraints. Both systems have been simulated in UPPAAL and checked against the required behavioral properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the experimental phase diagram of LiHoxEr1-xF4, a dilution series of dipolar-coupled model magnets. The phase diagram was determined using a combination of ac susceptibility and neutron scattering. Three unique phases in addition to the Ising ferromagnet LiHoF4 and the XY antiferromagnet LiErF4 have been identified. Below x = 0.86, an embedded spin-glass phase is observed, where a spin glass exists within the ferromagnetic structure. Below x = 0.57, an Ising spin glass is observed consisting of frozen needlelike clusters. For x ∼ 0.3–0.1, an antiferromagnetically coupled spin glass occurs. A reduction of TC(x) for the ferromagnet is observed which disobeys the mean-field predictions that worked for LiHoxY1-xF4.