935 resultados para Mission Structire
Resumo:
‘Social innovation’ is a construct increasingly used to explain the practices, processes and actors through which sustained positive transformation occurs in the network society (Mulgan, G., Tucker, S., Ali, R., Sander, B. (2007). Social innovation: What it is, why it matters and how can it be accelerated. Oxford:Skoll Centre for Social Entrepreneurship; Phills, J. A., Deiglmeier, K., & Miller, D. T. Stanford Social Innovation Review, 6(4):34–43, 2008.). Social innovation has been defined as a “novel solution to a social problem that is more effective, efficient, sustainable, or just than existing solutions, and for which the value created accrues primarily to society as a whole rather than private individuals.” (Phills,J. A., Deiglmeier, K., & Miller, D. T. Stanford Social Innovation Review, 6 (4):34–43, 2008: 34.) Emergent ideas of social innovation challenge some traditional understandings of the nature and role of the Third Sector, as well as shining a light on those enterprises within the social economy that configure resources in novel ways. In this context, social enterprises – which provide a social or community benefit and trade to fulfil their mission – have attracted considerable policy attention as one source of social innovation within a wider field of action (see Leadbeater, C. (2007). ‘Social enterprise and social innovation: Strategies for the next 10 years’, Cabinet office,Office of the third sector http://www.charlesleadbeater.net/cms xstandard/social_enterprise_innovation.pdf. Last accessed 19/5/2011.). And yet, while social enterprise seems to have gained some symbolic traction in society, there is to date relatively limited evidence of its real world impacts.(Dart, R. Not for Profit Management and Leadership, 14(4):411–424, 2004.) In other words, we do not know much about the social innovation capabilities and effects of social enterprise. In this chapter, we consider the social innovation practices of social enterprise, drawing on Mulgan, G., Tucker, S., Ali, R., Sander, B. (2007). Social innovation: What it is, why it matters and how can it be accelerated. Oxford: Skoll Centre for Social Entrepreneurship: 5) three dimensions of social innovation: new combinations or hybrids of existing elements; cutting across organisational, sectoral and disciplinary boundaries; and leaving behind compelling new relationships. Based on a detailed survey of 365 Australian social enterprises, we examine their self-reported business and mission-related innovations, the ways in which they configure and access resources and the practices through which they diffuse innovation in support of their mission. We then consider how these findings inform our understanding of the social innovation capabilities and effects of social enterprise,and their implications for public policy development.
Resumo:
The launch of the Centre of Research Excellence in Reducing Healthcare Associated Infection (CRE-RHAI) took place in Sydney on Friday 12 October 2012. The mission of the CRE-RHAI is to generate new knowledge about strategies to reduce healthcare associated infections and to provide data on the cost-effectiveness of infection control programs. As well as launching the CRE-RHAI, an important part of this event was a stakeholder Consultation Workshop, which brought together several experts in the Australian infection control community. The aims of this workshop were to establish the research and clinical priorities in Australian infection control, assess the importance of various multi-resistant organisms, and to gather information about decision making in infection control. We present here a summary and discussion of the responses we received.
Resumo:
This paper presents a novel evolutionary computation approach to three-dimensional path planning for unmanned aerial vehicles (UAVs) with tactical and kinematic constraints. A genetic algorithm (GA) is modified and extended for path planning. Two GAs are seeded at the initial and final positions with a common objective to minimise their distance apart under given UAV constraints. This is accomplished by the synchronous optimisation of subsequent control vectors. The proposed evolutionary computation approach is called synchronous genetic algorithm (SGA). The sequence of control vectors generated by the SGA constitutes to a near-optimal path plan. The resulting path plan exhibits no discontinuity when transitioning from curve to straight trajectories. Experiments and results show that the paths generated by the SGA are within 2% of the optimal solution. Such a path planner when implemented on a hardware accelerator, such as field programmable gate array chips, can be used in the UAV as on-board replanner, as well as in ground station systems for assisting in high precision planning and modelling of mission scenarios.
Resumo:
Work integration social enterprises (WISE) seek to create employment and pathways to employment for those highly disadvantaged in the labour market. This chapter examines the effects of WISE on the wellbeing of immigrants and refugees experiencing multiple barriers to economic and social participation. Drawing on an evaluation of a programme that supports seven such enterprises in the Australian state of Victoria, the effects of involvement for individual participants and their communities are examined. The study finds that this social enterprise model affords unique local opportunities for economic and social participation for groups experiencing significant barriers to meaningful employment. These opportunities have a positive impact on individual and community-level wellbeing. However, the financial costs of the model are high relative to other employment programmes, which is consistent with international findings on intermediate labour market programmes. The productivity costs of WISE are also disproportionately high compared to private sector competitors in some industries. This raises considerable dilemmas for social enterprise operators seeking to produce social value and achieve business sustainability while bearing high productivity costs to fulfil their mission. Further, the evaluation illuminates an ongoing need to address the systemic and structural drivers of health and labour market inequalities that characterize socio-economic participation for immigrants and refugees.
Resumo:
A novel gold coated femtosecond laser nanostructured sapphire surface – an “optical nose” - based on surface-enhanced Raman spectroscopy (SERS) for detecting vapours of explosive substances was investigated. Four different nitroaromatic vapours at room temperature were tested. Sensor responses were unambiguous and showed response in the range of 0.05 – 15 uM at 25 °C. The laser fabricated substrate nanostructures produced up to an eight-fold increase in Raman signal over that observed on the unstructured portions of the substrate. This work demonstrates a simple sensing system that is compatible with commercial manufacturing practices to detect taggants in explosives which can undertake as part of an integrated security or investigative mission.
Resumo:
Advances in technology introduce new application areas for sensor networks. Foreseeable wide deployment of mission critical sensor networks creates concerns on security issues. Security of large scale densely deployed and infrastructure less wireless networks of resource limited sensor nodes requires efficient key distribution and management mechanisms. We consider distributed and hierarchical wireless sensor networks where unicast, multicast and broadcast type of communications can take place. We evaluate deterministic, probabilistic and hybrid type of key pre-distribution and dynamic key generation algorithms for distributing pair-wise, group-wise and network-wise keys.
Resumo:
This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.
Resumo:
The geology/reservoir program of the Queensland Geothermal Energy Centre of Excellence (QGECE) has the mission to improve the existing knowledge and develop new innovative scientific approaches for the identification of geothermal resources in Australia, with a particular focus on Queensland. Specifically, the QGECE geology/reservoir program is currently (1) producing a comprehensive geochemical dataset for high heat producing rocks, (2) conducting detailed mineralogical and geochronological studies of granites and hydrothermal alteration minerals, and ; (3) investigating the Cooper Basin representing a superb natural laboratory for understanding of radiogenic heat enrichment process and possible involvement of mantle heat flow. Seven research projects have been established, which are being conducted largely as PhD studies. In the preliminary studies, high quality and valuable results were obtained to address the research topics of understanding the causes and timing of heat producing element enrichment.
Resumo:
The main aim of this paper is to describe an adaptive re-planning algorithm based on a RRT and Game Theory to produce an efficient collision free obstacle adaptive Mission Path Planner for Search and Rescue (SAR) missions. This will provide UAV autopilots and flight computers with the capability to autonomously avoid static obstacles and No Fly Zones (NFZs) through dynamic adaptive path replanning. The methods and algorithms produce optimal collision free paths and can be integrated on a decision aid tool and UAV autopilots.
Resumo:
Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
The main objective of this paper is to describe the development of a remote sensing airborne air sampling system for Unmanned Aerial Systems (UAS) and provide the capability for the detection of particle and gas concentrations in real time over remote locations. The design of the air sampling methodology started by defining system architecture, and then by selecting and integrating each subsystem. A multifunctional air sampling instrument, with capability for simultaneous measurement of particle and gas concentrations was modified and integrated with ARCAA’s Flamingo UAS platform and communications protocols. As result of the integration process, a system capable of both real time geo-location monitoring and indexed-link sampling was obtained. Wind tunnel tests were conducted in order to evaluate the performance of the air sampling instrument in controlled nonstationary conditions at the typical operational velocities of the UAS platform. Once the remote fully operative air sampling system was obtained, the problem of mission design was analyzed through the simulation of different scenarios. Furthermore, flight tests of the complete air sampling system were then conducted to check the dynamic characteristics of the UAS with the air sampling system and to prove its capability to perform an air sampling mission following a specific flight path.
Resumo:
An onboard payload may be seen in most instances as the “Raison d’Etre” for a UAV. It will define its capabilities, usability and hence market value. Large and medium UAV payloads exhibit significant differences in size and computing capability when compared with small UAVs. The latter have stringent size, weight, and power requirements, typically referred as SWaP, while the former still exhibit endless appetite for compute capability. The tendency for this type of UAVs (Global Hawk, Hunter, Fire Scout, etc.) is to increase payload density and hence processing capability. An example of this approach is the Northrop Grumman MQ-8 Fire Scout helicopter, which has a modular payload architecture that incorporates off-the-shelf components. Regardless of the UAV size and capabilities, advances in miniaturization of electronics are enabling the replacement of multiprocessing, power-hungry general-purpose processors for more integrated and compact electronics (e.g., FPGAs). Payloads play a significant role in the quality of ISR (intelligent, surveillance, and reconnaissance) data, and also in how quick that information can be delivered to the end user. At a high level, payloads are important enablers of greater mission autonomy, which is the ultimate aim in every UAV. This section describes common payload sensors and introduces two examples cases in which onboard payloads were used to solve real-world problems. A collision avoidance payload based on electro optical (EO) sensors is first introduced, followed by a remote sensing application for power line inspection and vegetation management.
Resumo:
Social enterprises are hybrid organizational forms that combine characteristics of for-profit businesses and community sector organizations. This article explores how rural communities may use social enterprises to progress local development agendas across both economic and social domains. Drawing on qualitative case studies of three social enterprises in rural North West Tasmania, this article explores the role of social enterprises in local development processes. The case study social enterprises, despite differences in size, structure, mission and age, are strongly embedded in their local places and local communities. As deeply contextualized development actors, these social enterprises mobilize multiple resources and assets to achieve a range of local development outcomes, including but not limited to social capital
Resumo:
This paper introduces ‘the stitchery collective’ – a fashion based artist-run-initiative. First the paper overviews the collective’s broad mission (to use fashion for good) and outlines its operational status. It closes with a brief reflection on how ‘the stitchery collective’ can be seen to contribute to, or align with, the field known as with social innovation.
Resumo:
In Queensland, there is little research that speaks to the historical experiences of schooling. Aboriginal education remains a part of the silenced history of Aboriginal people. This thesis presents stories of schooling from Aboriginal people across three generations of adult storytellers. Elders, grandparents, and young parents involved in an early childhood urban playgroup were included. Stories from the children attending the playgroup were also welcomed. The research methodology involved narrative storywork. This is culturally appropriate because Aboriginal stories connect the past with the present. The conceptual framework for the research draws on decolonising theory. Typically, reports of Aboriginal schooling and outcomes position Aboriginal families and children within a deficit discourse. The issues and challenges faced by urban Murri families who have young children or children in school are largely unknown. This research allowed Aboriginal families to participate in an engaged dialogue about their childhood and offered opportunities to tell their stories of education. Key research questions were: What was the reality of school for different generations of Indigenous people? What beliefs and values are held about mainstream education for Indigenous children? What ideas are communicated about school across generations? Narratives from five elders, five grandparents, and five (urban) mothers of young Indigenous children are presented. The elders offer testimony on their recollected experiences of schooling in a mission, a Yumba school (fringe-dwellers’ camp), and country schools. Their stories also speak to the need to pass as non-indigenous and act as “white”. The next generation of storytellers are the grandparents and they speak to their lives as “stolen children”. The final story tellers are the Murri parents. They speak to the current and recent past of education, as well as their family experiences as they parent young children who are about to enter school or who are in the early years of school.