924 resultados para Mean Absolute Scaled Error (MASE)
Resumo:
Background Several approaches have been used to express energy expenditure in youth, but no consensus exists as to which best normalizes data for the wide range of ages and body sizes across a range of physical activities. This study examined several common metrics for expressing energy expenditure to determine whether one metric can be used for all healthy children. Such a metric could improve our ability to further advance the Compendium of Physical Activities for Youth. Methods A secondary analysis of oxygen uptake (VO2) data obtained from five sites was completed, that included 947 children ages 5 to 18 years, who engaged in 14 different activities. Resting metabolic rate (RMR) was computed based on Schofield Equations [Hum Nutr Clin Nut. 39(Suppl 1), 1985]. Absolute oxygen uptake (ml.min-1), oxygen uptake per kilogram body mass (VO2 in ml.kg-1.min-1), net oxygen uptake (VO2 – resting metabolic rate), allometric scaled oxygen uptake (VO2 in ml.kg-0.75.min-1) and YOUTH-MET (VO2.[resting VO2] -1) were calculated. These metrics were regressed with age, sex, height, and body mass. Results Net and allometric-scaled VO2, and YOUTH-MET were least associated with age, sex and physical characteristics. For moderate-to-vigorous intensity activities, allometric scaling was least related to age and sex. For sedentary and low-intensity activities, YOUTH-MET was least related to age and sex. Conclusions No energy expenditure metric completely eliminated the influence of age, physical characteristics, and sex. The Adult MET consistently overestimated EE. YOUTH-MET was better for expressing energy expenditure for sedentary and light activities, whereas allometric scaling was better for moderate and vigorous intensity activities. From a practical perspective, The YOUTH-MET may be the more feasible metric for improving of the Compendium of Physical Activities for Youth.
Resumo:
Inadvertent climate modification has led to an increase in urban temperatures compared to the surrounding rural area. The main reason for the temperature rise is the altered energy portioning of input net radiation to heat storage and sensible and latent heat fluxes in addition to the anthropogenic heat flux. The heat storage flux and anthropogenic heat flux have not yet been determined for Helsinki and they are not directly measurable. To the contrary, turbulent fluxes of sensible and latent heat in addition to net radiation can be measured, and the anthropogenic heat flux together with the heat storage flux can be solved as a residual. As a result, all inaccuracies in the determination of the energy balance components propagate to the residual term and special attention must be paid to the accurate determination of the components. One cause of error in the turbulent fluxes is the fluctuation attenuation at high frequencies which can be accounted for by high frequency spectral corrections. The aim of this study is twofold: to assess the relevance of high frequency corrections to water vapor fluxes and to assess the temporal variation of the energy fluxes. Turbulent fluxes of sensible and latent heat have been measured at SMEAR III station, Helsinki, since December 2005 using the eddy covariance technique. In addition, net radiation measurements have been ongoing since July 2007. The used calculation methods in this study consist of widely accepted eddy covariance data post processing methods in addition to Fourier and wavelet analysis. The high frequency spectral correction using the traditional transfer function method is highly dependent on relative humidity and has an 11% effect on the latent heat flux. This method is based on an assumption of spectral similarity which is shown not to be valid. A new correction method using wavelet analysis is thus initialized and it seems to account for the high frequency variation deficit. Anyhow, the resulting wavelet correction remains minimal in contrast to the traditional transfer function correction. The energy fluxes exhibit a behavior characteristic for urban environments: the energy input is channeled to sensible heat as latent heat flux is restricted by water availability. The monthly mean residual of the energy balance ranges from 30 Wm-2 in summer to -35 Wm-2 in winter meaning a heat storage to the ground during summer. Furthermore, the anthropogenic heat flux is approximated to be 50 Wm-2 during winter when residential heating is important.
Resumo:
In this paper a study of the free, forced and self-excited vibrations of non-linear, two degrees of freedom systems is reported. The responses are obtained by linearizing the nonlinear equations using the weighted mean square linearization approach. The scope of this approach, in terms of the type of non-linearities the method can tackle, is also discussed.
Resumo:
Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Resumo:
The average dimensions of the peptide unit have been obtained from the data reported in recent crystal structure analyses of di- and tripeptides. The bond lengths and bond angles agree with those in common use, except for the bond angle C---N---H, which is about 4° less than the accepted value, and the angle C2α---N---H which is about 4° more. The angle τ (Cα) has a mean value of 114° for glycyl residues and 110° for non-glycyl residues. Attention is directed to these mean values as observed in crystal structures, as they are relevant for model building of peptide chain structures.
Resumo:
A formula has been derived for the mean-square error in the phases of crystal reflections determined through the multiwavelength anomalous scattering method. The error is written in terms of a simple function of the positions in the complex plane of the 'centres' corresponding to the different wavelengths. For the case of three centres, the mean-square error is inversely proportional to the area of the triangle formed by them. The theoretical values are in good agreement with those obtained by earlier workers from computer simulations. The present method makes it easier to optimize the number and the actual wavelengths to be employed in the multiwavelength method. The maximum benefits of this method are expected in experiments employing synchrotron radiation or neutrons.
Resumo:
In this paper a study of the free, forced and self-excited vibrations of non-linear, two degrees of freedom systems is reported. The responses are obtained by linearizing the nonlinear equations using the weighted mean square linearization approach. The scope of this approach, in terms of the type of non-linearities the method can tackle, is also discussed.
Resumo:
A simple error detecting and correcting procedure is described for nonbinary symbol words; here, the error position is located using the Hamming method and the correct symbol is substituted using a modulo-check procedure.
Resumo:
A zonally averaged version of the Goddard Laboratory for Atmospheric Sciences (GLAS) climate model is used to study the sensitivity of the northern hemisphere (NH) summer mean meridional circulation to changes in the large scale eddy forcing. A standard solution is obtained by prescribing the latent heating field and climatological horizontal transports of heat and momentum by the eddies. The radiative heating and surface fluxes are calculated by model parameterizations. This standard solution is compared with the results of several sensitivity studies. When the eddy forcing is reduced to 0.5 times or increased to 1.5 times the climatological values, the strength of the Ferrel cells decrease or increase proportionally. It is also seen that such changes in the eddy forcing can influence the strength of theNH Hadley cell significantly. Possible impact of such changes in the large scale eddy forcing on the monsoon circulation via changes in the Hadley circulation is discussed. Sensitivity experiments including only one component of eddy forcing at a time show that the eddy momentum fluxes seem to be more important in maintaining the Ferrel cells than the eddy heat fluxes. In the absence of the eddy heat fluxes, the observed eddy momentum fluxes alone produce subtropical westerly jets which are weaker than those in the standard solution. On the other hand, the observed eddy heat fluxes alone produce subtropical westerly jets which are stronger than those in the standard solution.
Resumo:
West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031–2060 compared to a baseline of 1961–1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO2, mean crop yield decreases by about 16–20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO2. Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a potential adaptation to ongoing climate changes. Easing nitrogen stress via increasing fertilizer inputs would increase absolute yields, but also make the crops more responsive to climate stresses, thus enhancing the negative impacts of climate change in a relative sense. Finally, CO2 fertilization would significantly offset the negative climate
Resumo:
Near infrared (NIR) spectroscopy was investigated as a potential rapid method of estimating fish age from whole otoliths of Saddletail snapper (Lutjanus malabaricus). Whole otoliths from 209 Saddletail snapper were extracted and the NIR spectral characteristics were acquired over a spectral range of 800–2780 nm. Partial least-squares models (PLS) were developed from the diffuse reflectance spectra and reference-validated age estimates (based on traditional sectioned otolith increments) to predict age for independent otolith samples. Predictive models developed for a specific season and geographical location performed poorly against a different season and geographical location. However, overall PLS regression statistics for predicting a combined population incorporating both geographic location and season variables were: coefficient of determination (R2) = 0.94, root mean square error of prediction (RMSEP) = 1.54 for age estimation, indicating that Saddletail age could be predicted within 1.5 increment counts. This level of accuracy suggests the method warrants further development for Saddletail snapper and may have potential for other fish species. A rapid method of fish age estimation could have the potential to reduce greatly both costs of time and materials in the assessment and management of commercial fisheries.
Resumo:
Multi- and intralake datasets of fossil midge assemblages in surface sediments of small shallow lakes in Finland were studied to determine the most important environmental factors explaining trends in midge distribution and abundance. The aim was to develop palaeoenvironmental calibration models for the most important environmental variables for the purpose of reconstructing past environmental conditions. The developed models were applied to three high-resolution fossil midge stratigraphies from southern and eastern Finland to interpret environmental variability over the past 2000 years, with special focus on the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and recent anthropogenic changes. The midge-based results were compared with physical properties of the sediment, historical evidence and environmental reconstructions based on diatoms (Bacillariophyta), cladocerans (Crustacea: Cladocera) and tree rings. The results showed that the most important environmental factor controlling midge distribution and abundance along a latitudinal gradient in Finland was the mean July air temperature (TJul). However, when the dataset was environmentally screened to include only pristine lakes, water depth at the sampling site became more important. Furthermore, when the dataset was geographically scaled to southern Finland, hypolimnetic oxygen conditions became the dominant environmental factor. The results from an intralake dataset from eastern Finland showed that the most important environmental factors controlling midge distribution within a lake basin were river contribution, water depth and submerged vegetation patterns. In addition, the results of the intralake dataset showed that the fossil midge assemblages represent fauna that lived in close proximity to the sampling sites, thus enabling the exploration of within-lake gradients in midge assemblages. Importantly, this within-lake heterogeneity in midge assemblages may have effects on midge-based temperature estimations, because samples taken from the deepest point of a lake basin may infer considerably colder temperatures than expected, as shown by the present test results. Therefore, it is suggested here that the samples in fossil midge studies involving shallow boreal lakes should be taken from the sublittoral, where the assemblages are most representative of the whole lake fauna. Transfer functions between midge assemblages and the environmental forcing factors that were significantly related with the assemblages, including mean air TJul, water depth, hypolimnetic oxygen, stream flow and distance to littoral vegetation, were developed using weighted averaging (WA) and weighted averaging-partial least squares (WA-PLS) techniques, which outperformed all the other tested numerical approaches. Application of the models in downcore studies showed mostly consistent trends. Based on the present results, which agreed with previous studies and historical evidence, the Medieval Climate Anomaly between ca. 800 and 1300 AD in eastern Finland was characterized by warm temperature conditions and dry summers, but probably humid winters. The Little Ice Age (LIA) prevailed in southern Finland from ca. 1550 to 1850 AD, with the coldest conditions occurring at ca. 1700 AD, whereas in eastern Finland the cold conditions prevailed over a longer time period, from ca. 1300 until 1900 AD. The recent climatic warming was clearly represented in all of the temperature reconstructions. In the terms of long-term climatology, the present results provide support for the concept that the North Atlantic Oscillation (NAO) index has a positive correlation with winter precipitation and annual temperature and a negative correlation with summer precipitation in eastern Finland. In general, the results indicate a relatively warm climate with dry summers but snowy winters during the MCA and a cool climate with rainy summers and dry winters during the LIA. The results of the present reconstructions and the forthcoming applications of the models can be used in assessments of long-term environmental dynamics to refine the understanding of past environmental reference conditions and natural variability required by environmental scientists, ecologists and policy makers to make decisions concerning the presently occurring global, regional and local changes. The developed midge-based models for temperature, hypolimnetic oxygen, water depth, littoral vegetation shift and stream flow, presented in this thesis, are open for scientific use on request.
Resumo:
Environmental changes have put great pressure on biological systems leading to the rapid decline of biodiversity. To monitor this change and protect biodiversity, animal vocalizations have been widely explored by the aid of deploying acoustic sensors in the field. Consequently, large volumes of acoustic data are collected. However, traditional manual methods that require ecologists to physically visit sites to collect biodiversity data are both costly and time consuming. Therefore it is essential to develop new semi-automated and automated methods to identify species in automated audio recordings. In this study, a novel feature extraction method based on wavelet packet decomposition is proposed for frog call classification. After syllable segmentation, the advertisement call of each frog syllable is represented by a spectral peak track, from which track duration, dominant frequency and oscillation rate are calculated. Then, a k-means clustering algorithm is applied to the dominant frequency, and the centroids of clustering results are used to generate the frequency scale for wavelet packet decomposition (WPD). Next, a new feature set named adaptive frequency scaled wavelet packet decomposition sub-band cepstral coefficients is extracted by performing WPD on the windowed frog calls. Furthermore, the statistics of all feature vectors over each windowed signal are calculated for producing the final feature set. Finally, two well-known classifiers, a k-nearest neighbour classifier and a support vector machine classifier, are used for classification. In our experiments, we use two different datasets from Queensland, Australia (18 frog species from commercial recordings and field recordings of 8 frog species from James Cook University recordings). The weighted classification accuracy with our proposed method is 99.5% and 97.4% for 18 frog species and 8 frog species respectively, which outperforms all other comparable methods.
Resumo:
Digital elevation models (DEMs) have been an important topic in geography and surveying sciences for decades due to their geomorphological importance as the reference surface for gravita-tion-driven material flow, as well as the wide range of uses and applications. When DEM is used in terrain analysis, for example in automatic drainage basin delineation, errors of the model collect in the analysis results. Investigation of this phenomenon is known as error propagation analysis, which has a direct influence on the decision-making process based on interpretations and applications of terrain analysis. Additionally, it may have an indirect influence on data acquisition and the DEM generation. The focus of the thesis was on the fine toposcale DEMs, which are typically represented in a 5-50m grid and used in the application scale 1:10 000-1:50 000. The thesis presents a three-step framework for investigating error propagation in DEM-based terrain analysis. The framework includes methods for visualising the morphological gross errors of DEMs, exploring the statistical and spatial characteristics of the DEM error, making analytical and simulation-based error propagation analysis and interpreting the error propagation analysis results. The DEM error model was built using geostatistical methods. The results show that appropriate and exhaustive reporting of various aspects of fine toposcale DEM error is a complex task. This is due to the high number of outliers in the error distribution and morphological gross errors, which are detectable with presented visualisation methods. In ad-dition, the use of global characterisation of DEM error is a gross generalisation of reality due to the small extent of the areas in which the decision of stationarity is not violated. This was shown using exhaustive high-quality reference DEM based on airborne laser scanning and local semivariogram analysis. The error propagation analysis revealed that, as expected, an increase in the DEM vertical error will increase the error in surface derivatives. However, contrary to expectations, the spatial au-tocorrelation of the model appears to have varying effects on the error propagation analysis depend-ing on the application. The use of a spatially uncorrelated DEM error model has been considered as a 'worst-case scenario', but this opinion is now challenged because none of the DEM derivatives investigated in the study had maximum variation with spatially uncorrelated random error. Sig-nificant performance improvement was achieved in simulation-based error propagation analysis by applying process convolution in generating realisations of the DEM error model. In addition, typology of uncertainty in drainage basin delineations is presented.