945 resultados para Maximum penalized likelihood estimates
Resumo:
Cells respond to various biochemical and physical cues during wound–healing and tumour progression. In vitro assays used to study these processes are typically conducted in one particular geometry and it is unclear how the assay geometry affects the capacity of cell populations to spread, or whether the relevant mechanisms, such as cell motility and cell proliferation, are somehow sensitive to the geometry of the assay. In this work we use a circular barrier assay to characterise the spreading of cell populations in two different geometries. Assay 1 describes a tumour–like geometry where a cell population spreads outwards into an open space. Assay 2 describes a wound–like geometry where a cell population spreads inwards to close a void. We use a combination of discrete and continuum mathematical models and automated image processing methods to obtain independent estimates of the effective cell diffusivity, D, and the effective cell proliferation rate, λ. Using our parameterised mathematical model we confirm that our estimates of D and λ accurately predict the time–evolution of the location of the leading edge and the cell density profiles for both assay 1 and assay 2. Our work suggests that the effective cell diffusivity is up to 50% lower for assay 2 compared to assay 1, whereas the effective cell proliferation rate is up to 30% lower for assay 2 compared to assay 1.
Resumo:
The incidence of major storm surges in the last decade have dramatically emphasized the immense destructive capabilities of extreme water level events, particularly when driven by severe tropical cyclones. Given this risk, it is vitally important that the exceedance probabilities of extreme water levels are accurately evaluated to inform risk-based flood and erosion management, engineering and for future land-use planning and to ensure the risk of catastrophic structural failures due to under-design or expensive wastes due to over-design are minimised. Australia has a long history of coastal flooding from tropical cyclones. Using a novel integration of two modeling techniques, this paper provides the first estimates of present day extreme water level exceedance probabilities around the whole coastline of Australia, and the first estimates that combine the influence of astronomical tides, storm surges generated by both extra-tropical and tropical cyclones, and seasonal and inter-annual variations in mean sea level. Initially, an analysis of tide gauge records has been used to assess the characteristics of tropical cyclone-induced surges around Australia. However, given the dearth (temporal and spatial) of information around much of the coastline, and therefore the inability of these gauge records to adequately describe the regional climatology, an observationally based stochastic tropical cyclone model has been developed to synthetically extend the tropical cyclone record to 10,000 years. Wind and pressure fields derived for these synthetically generated events have then been used to drive a hydrodynamic model of the Australian continental shelf region with annual maximum water levels extracted to estimate exceedance probabilities around the coastline. To validate this methodology, selected historic storm surge events have been simulated and resultant storm surges compared with gauge records. Tropical cyclone induced exceedance probabilities have been combined with estimates derived from a 61-year water level hindcast described in a companion paper to give a single estimate of present day extreme water level probabilities around the whole coastline of Australia. Results of this work are freely available to coastal engineers, managers and researchers via a web-based tool (www.sealevelrise.info). The described methodology could be applied to other regions of the world, like the US east coast, that are subject to both extra-tropical and tropical cyclones.
Resumo:
We investigate the utility to computational Bayesian analyses of a particular family of recursive marginal likelihood estimators characterized by the (equivalent) algorithms known as "biased sampling" or "reverse logistic regression" in the statistics literature and "the density of states" in physics. Through a pair of numerical examples (including mixture modeling of the well-known galaxy dataset) we highlight the remarkable diversity of sampling schemes amenable to such recursive normalization, as well as the notable efficiency of the resulting pseudo-mixture distributions for gauging prior-sensitivity in the Bayesian model selection context. Our key theoretical contributions are to introduce a novel heuristic ("thermodynamic integration via importance sampling") for qualifying the role of the bridging sequence in this procedure, and to reveal various connections between these recursive estimators and the nested sampling technique.
Resumo:
We provide the first molecular phylogeny of the clerid lineage (Coleoptera: Cleridae, Thanerocleridae) within the superfamily Cleroidea to examine the two most recently-proposed hypotheses of higher-level classification. Phylogenetic relationships of checkered beetles were inferred from approximately ~5,000nt of both nuclear and mitochondrial rDNA (28S, 16S, and 12S) and the mitochondrial protein-coding gene COI. A worldwide sample of ~70 genera representing almost a quarter of generic diversity of the clerid lineage was included and phylogenies were reconstructed using Bayesian and Maximum Likelihood approaches. Results support the monophyly of many proposed subfamilies but were not entirely congruent with either current classification system. The subfamilial relationships within the Cleridae are resolved with support for three main lineages. Tillinae are supported as the sister group to all other subfamilies within the Cleridae, whereas Thaneroclerinae, Korynetinae and a new subfamily formally described here, Epiclininae subf. n, form a sister group to Clerinae + Hydnocerinae.
Resumo:
The house advantage for Baccarat is known, hence the theoretical win can be determined. What is impractical to theoretically determine is the frequency and financial implications of extreme events, for example, prolonged winning streaks coupled with various betting patterns. The simulation herein provides such granularity. We explore the effect of following the „hot hand‟, that is, rapidly escalating bets when players are on a winning streak. To minimize their exposure, casino management sets a table bet maximum as well as a table differential. These figures can and do serve as a means to differentiate one casino from another. As the allowable bet maximum increases so does the total amount bet, which increases the theoretical winnings, thus suggesting that a high bet limit and differential is beneficial for the house. However, the greater are these amounts, the greater the number of shoes that end with players losing relative to a constant betting scenario (the number of times a player wins at all can drop from ~47% of the time to less than a quarter); but there will, on occasion, be more extreme payouts to players. This simulation is therefore intended to help casino managers set betting limits that maximize total winnings while bearing in mind both the likelihood and magnitude of negative outcomes to the casino.
Resumo:
The aim of the current study was to examine the associations between a number of individual factors (demographic factors (age and gender), personality factors, risk-taking propensity, attitudes towards drink driving, and perceived legitimacy of drink driving enforcement) and how they influence the self-reported likelihood of drink driving. The second aim of this study was to examine the potential of attitudes mediating the relationship between risk-taking and self-reported likelihood of drink driving. In total, 293 Queensland drivers volunteered to participate in an online survey that assessed their self-reported likelihood to drink drive in the next month, demographics, traffic-related demographics, personality factors, risk-taking propensity, attitudes towards drink driving, and perceived legitimacy of drink driving enforcement. An ordered logistic regression analysis was utilised to evaluate the first aim of the study; at the first step the demographic variables were entered; at step two the personality and risk-taking were entered; at the third step, the attitudes and perceptions of legitimacy variables were entered. Being a younger driver and having a high risk-taking propensity were related to self-reported likelihood of drink driving. However, when the attitudes variable was entered, these individual factors were no longer significant; with attitudes being the most important predictor of self-reported drink driving likelihood. A significant mediation model was found with the second aim of the study, such that attitudes mediated the relationship between risk-taking and self-reported likelihood of drink driving. Considerable effort and resources are utilised by traffic authorities to reducing drink driving on the Australian road network. Notwithstanding these efforts, some participants still had some positive attitudes towards drink driving and reported that they were likely to drink drive in the future. These findings suggest that more work is needed to address attitudes regarding the dangerousness of drink driving.
Resumo:
Background There are few theoretically derived questionnaires of physical activity determinants among youth, and the existing questionnaires have not been subjected to tests of factorial validity and invariance, The present study employed confirmatory factor analysis (CFA) to test the factorial validity and invariance of questionnaires designed to be unidimensional measures of attitudes, subjective norms, perceived behavioral control, and self-efficacy about physical activity. Methods Adolescent girls in eighth grade from two cohorts (N = 955 and 1,797) completed the questionnaires at baseline; participants from cohort 1 (N = 845) also completed the questionnaires in ninth grade (i.e., 1-year follow-up). Factorial validity and invariance were tested using CFA with full-information maximum likelihood estimation in AMOS 4.0, Initially, baseline data from cohort 1 were employed to test the fit and, when necessary, to modify the unidimensional models. The models were cross-validated using a multigroup analysis of factorial invariance on baseline data from cohorts 1 and 2, The models then were subjected to a longitudinal analysis of factorial invariance using baseline and follow-up data from cohort i, Results The CFAs supported the fit of unidimensional models to the four questionnaires, and the models were cross-validated, as indicated by evidence of multigroup factorial invariance, The models also possessed evidence of longitudinal factorial invariance. Conclusions Evidence was provided for the factorial validity and the invariance of the questionnaires designed to be unidimensional measures of attitudes, subjective norms, perceived behavioral control, and self-efficacy about physical activity among adolescent girls, (C) 2000 American Health Foundation and academic Press.
Resumo:
As a sequel to a paper that dealt with the analysis of two-way quantitative data in large germplasm collections, this paper presents analytical methods appropriate for two-way data matrices consisting of mixed data types, namely, ordered multicategory and quantitative data types. While various pattern analysis techniques have been identified as suitable for analysis of the mixed data types which occur in germplasm collections, the clustering and ordination methods used often can not deal explicitly with the computational consequences of large data sets (i.e. greater than 5000 accessions) with incomplete information. However, it is shown that the ordination technique of principal component analysis and the mixture maximum likelihood method of clustering can be employed to achieve such analyses. Germplasm evaluation data for 11436 accessions of groundnut (Arachis hypogaea L.) from the International Research Institute of the Semi-Arid Tropics, Andhra Pradesh, India were examined. Data for nine quantitative descriptors measured in the post-rainy season and five ordered multicategory descriptors were used. Pattern analysis results generally indicated that the accessions could be distinguished into four regions along the continuum of growth habit (or plant erectness). Interpretation of accession membership in these regions was found to be consistent with taxonomic information, such as subspecies. Each growth habit region contained accessions from three of the most common groundnut botanical varieties. This implies that within each of the habit types there is the full range of expression for the other descriptors used in the analysis. Using these types of insights, the patterns of variability in germplasm collections can provide scientists with valuable information for their plant improvement programs.
Resumo:
The underrepresentation of blacks in the healthcare professions may have direct implications for the health outcomes of minority patients, underscoring the importance of understanding movement through the educational pipeline into professional healthcare careers by race. We jointly model individuals' postsecondary decisions including enrollment, college type, degree completion, and choosing a healthcare occupation requiring an advanced degree. We estimate the parameters of the model with maximum likelihood using data from the NLS-72. Our results emphasize the importance of pre-collegiate factors and of jointly examining the full chain of educational decisions in understanding the sources of racial disparities in professional healthcare occupations.
Semiparametric estimates of the supply and demand effects of disability on labor force participation
Resumo:
This paper modifies and uses the semiparametric methods of Ichimura and Lee (1991) on standard cross-section data to decompose the effect of disability on labor force participation into a demand and a supply effect. It shows that straightforward use of Ichimura and Lee leads to meaningless results while imposing monotonicity on the unknown function leads to substantial results. The paper finds that supply effects dominate the demand effects of disability.
Resumo:
Objective: To examine the effects of personal and community characteristics, specifically race and rurality, on lengths of state psychiatric hospital and community stays using maximum likelihood survival analysis with a special emphasis on change over a ten year period of time. Data Sources: We used the administrative data of the Virginia Department of Mental Health, Mental Retardation, and Substance Abuse Services (DMHMRSAS) from 1982-1991 and the Area Resources File (ARF). Given these two sources, we constructed a history file for each individual who entered the state psychiatric system over the ten year period. Histories included demographic, treatment, and community characteristics. Study Design: We used a longitudinal, population-based design with maximum likelihood estimation of survival models. We presented a random effects model with unobserved heterogeneity that was independent of observed covariates. The key dependent variables were lengths of inpatient stay and subsequent length of community stay. Explanatory variables measured personal, diagnostic, and community characteristics, as well as controls for calendar time. Data Collection: This study used secondary, administrative, and health planning data. Principal Findings: African-American clients leave the community more quickly than whites. After controlling for other characteristics, however, race does not affect hospital length of stay. Rurality does not affect length of community stays once other personal and community characteristics are controlled for. However, people from rural areas have longer hospital stays even after controlling for personal and community characteristics. The effects of time are significantly smaller than expected. Diagnostic composition effects and a decrease in the rate of first inpatient admissions explain part of this reduced impact of time. We also find strong evidence for the existence of unobserved heterogeneity in both types of stays and adjust for this in our final models. Conclusions: Our results show that information on client characteristics available from inpatient stay records is useful in predicting not only the length of inpatient stay but also the length of the subsequent community stay. This information can be used to target increased discharge planning for those at risk of more rapid readmission to inpatient care. Correlation across observed and unobserved factors affecting length of stay has significant effects on the measurement of relationships between individual factors and lengths of stay. Thus, it is important to control for both observed and unobserved factors in estimation.
Resumo:
A national survey to estimate vacancy rates of Certified Registered Nurse Anesthetists (CRNAs) in hospitals and ambulatory surgical centers was conducted in 2007. Poisson regression methods were used to improve the precision of the estimates. A significant increase in the estimated vacancy rate was reported for hospitals relative to an earlier study from 2002, although it is important to note that there were some methodological differences between the 2 surveys explaining part of the increase. Results from this study found the vacancy rate was higher in rural hospitals than in nonrural hospitals, and it was lower in ambulatory surgical centers. A number of simulations were run to predict the effects of relevant changes in the market for surgeries and number of CRNAs, which were compared to the predictions from the previous survey. The remarkable factor since the last survey was the unusually large rate of new CRNAs entering the market, yet the vacancy rates remain relatively high.
Resumo:
The occurrence of extreme water level events along low-lying, highly populated and/or developed coastlines can lead to devastating impacts on coastal infrastructure. Therefore it is very important that the probabilities of extreme water levels are accurately evaluated to inform flood and coastal management and for future planning. The aim of this study was to provide estimates of present day extreme total water level exceedance probabilities around the whole coastline of Australia, arising from combinations of mean sea level, astronomical tide and storm surges generated by both extra-tropical and tropical storms, but exclusive of surface gravity waves. The study has been undertaken in two main stages. In the first stage, a high-resolution (~10 km along the coast) hydrodynamic depth averaged model has been configured for the whole coastline of Australia using the Danish Hydraulics Institute’s Mike21 modelling suite of tools. The model has been forced with astronomical tidal levels, derived from the TPX07.2 global tidal model, and meteorological fields, from the US National Center for Environmental Prediction’s global reanalysis, to generate a 61-year (1949 to 2009) hindcast of water levels. This model output has been validated against measurements from 30 tide gauge sites around Australia with long records. At each of the model grid points located around the coast, time series of annual maxima and the several highest water levels for each year were derived from the multi-decadal water level hindcast and have been fitted to extreme value distributions to estimate exceedance probabilities. Stage 1 provided a reliable estimate of the present day total water level exceedance probabilities around southern Australia, which is mainly impacted by extra-tropical storms. However, as the meteorological fields used to force the hydrodynamic model only weakly include the effects of tropical cyclones the resultant water levels exceedance probabilities were underestimated around western, northern and north-eastern Australia at higher return periods. Even if the resolution of the meteorological forcing was adequate to represent tropical cyclone-induced surges, multi-decadal periods yielded insufficient instances of tropical cyclones to enable the use of traditional extreme value extrapolation techniques. Therefore, in the second stage of the study, a statistical model of tropical cyclone tracks and central pressures was developed using histroic observations. This model was then used to generate synthetic events that represented 10,000 years of cyclone activity for the Australia region, with characteristics based on the observed tropical cyclones over the last ~40 years. Wind and pressure fields, derived from these synthetic events using analytical profile models, were used to drive the hydrodynamic model to predict the associated storm surge response. A random time period was chosen, during the tropical cyclone season, and astronomical tidal forcing for this period was included to account for non-linear interactions between the tidal and surge components. For each model grid point around the coast, annual maximum total levels for these synthetic events were calculated and these were used to estimate exceedance probabilities. The exceedance probabilities from stages 1 and 2 were then combined to provide a single estimate of present day extreme water level probabilities around the whole coastline of Australia.
Resumo:
Wastewater containing human sewage is often discharged with little or no treatment into the Antarctic marine environment. Faecal sterols (primarily coprostanol) in sediments have been used for assessment of human sewage contamination in this environment, but in situ production and indigenous faunal inputs can confound such determinations. Using gas chromatography with mass spectral detection profiles of both C27 and C29 sterols, potential sources of faecal sterols were examined in nearshore marine sediments, encompassing sites proximal and distal to the wastewater outfall at Davis Station. Faeces from indigenous seals and penguins were also examined. Faeces from several indigenous species contained significant quantities of coprostanol but not 24-ethylcoprostanol, which is present in human faeces. In situ coprostanol and 24-ethylcoprostanol production was identified by co-production of their respective epi isomers at sites remote from the wastewat er source and in high total organic matter sediments. A C 29 sterols-based polyphasic likelihood assessment matrix for human sewage contamination is presented, which distinguishes human from local fauna faecal inputs and in situ production in the Antarctic environment. Sewage contamination was detected up to 1.5 km from Davis Station.
Resumo:
The phylogenetic relationships of the beetle superfamily Tenebrionoidea are investigated using the most comprehensive genetic data set compiled to date. With ∼34,000 described species in approximately 1250 genera and 28 families, Tenebrionoidea represent one of the most diverse and species-rich superfamilies of beetles. The interfamilial relationships of the Tenebrionoidea are poorly known; previous morphological and molecular phylogenies recovered few well-supported and often conflicting relationships between families. Here we present a molecular phylogeny of Tenebrionoidea based on genes commonly used to resolve family and superfamily-level phylogenies of beetles (18S, 28S, 16S, 12S, tRNA Val and COI). The alignment spanned over 6.5 KB of DNA sequence and over 300 tenebrionoid genera from 24 of the 28 families were sampled. Maximum Likelihood and Bayesian analysis could not resolve deeper level divergences within the superfamily and very few relationships between families were supported. Increasing gene coverage in the alignment by removing taxa with missing data did not improve clade support but when rogue taxa were removed increased resolution was recovered. Investigation of signal strength suggested conflicting phylogenetic signal was present in the standard genes used for beetle phylogenetics, even when rogue taxa were removed. Our study of Tenebrionoidea highlights that even with relatively comprehensive taxon sampling within a lineage, this standard set of genes is unable to resolve relationships within this superfamily.