972 resultados para Matrix Array Symmetric Key Encryption
Resumo:
Following the success of the first round table in 2001, the Swiss Proteomic Society has organized two additional specific events during its last two meetings: a proteomic application exercise in 2002 and a round table in 2003. Such events have as their main objective to bring together, around a challenging topic in mass spectrometry, two groups of specialists, those who develop and commercialize mass spectrometry equipment and software, and expert MS users for peptidomics and proteomics studies. The first round table (Geneva, 2001) entitled "Challenges in Mass Spectrometry" was supported by brief oral presentations that stressed critical questions in the field of MS development or applications (Stöcklin and Binz, Proteomics 2002, 2, 825-827). Topics such as (i) direct analysis of complex biological samples, (ii) status and perspectives for MS investigations of noncovalent peptide-ligant interactions; (iii) is it more appropriate to have complementary instruments rather than a universal equipment, (iv) standardization and improvement of the MS signals for protein identification, (v) what would be the new generation of equipment and finally (vi) how to keep hardware and software adapted to MS up-to-date and accessible to all. For the SPS'02 meeting (Lausanne, 2002), a full session alternative event "Proteomic Application Exercise" was proposed. Two different samples were prepared and sent to the different participants: 100 micro g of snake venom (a complex mixture of peptides and proteins) and 10-20 micro g of almost pure recombinant polypeptide derived from the shrimp Penaeus vannamei carrying an heterogeneous post-translational modification (PTM). Among the 15 participants that received the samples blind, eight returned results and most of them were asked to present their results emphasizing the strategy, the manpower and the instrumentation used during the congress (Binz et. al., Proteomics 2003, 3, 1562-1566). It appeared that for the snake venom extract, the quality of the results was not particularly dependant on the strategy used, as all approaches allowed Lication of identification of a certain number of protein families. The genus of the snake was identified in most cases, but the species was ambiguous. Surprisingly, the precise identification of the recombinant almost pure polypeptides appeared to be much more complicated than expected as only one group reported the full sequence. Finally the SPS'03 meeting reported here included a round table on the difficult and challenging task of "Quantification by Mass Spectrometry", a discussion sustained by four selected oral presentations on the use of stable isotopes, electrospray ionization versus matrix-assisted laser desorption/ionization approaches to quantify peptides and proteins in biological fluids, the handling of differential two-dimensional liquid chromatography tandem mass spectrometry data resulting from high throughput experiments, and the quantitative analysis of PTMs. During these three events at the SPS meetings, the impressive quality and quantity of exchanges between the developers and providers of mass spectrometry equipment and software, expert users and the audience, were a key element for the success of these fruitful events and will have definitively paved the way for future round tables and challenging exercises at SPS meetings.
Resumo:
Endocrine disruption is defined as the perturbation of the endocrine system, which includes disruption of nuclear hormone receptor signalling. Peroxisome proliferator-activated receptors (PPARs) represent a family of nuclear receptors that has not yet been carefully studied with regards to endocrine disruption, despite the fact that PPARs are known to be important targets for xenobiotics. Here we report a first comprehensive approach aimed at defining the mechanistic basis of PPAR disruption focusing on one chemical, the plasticizer monethylhexyl phthalate (MEHP), but using a variety of methodologies and models. We used mammalian cells and a combination of biochemical and live cell imaging techniques to show that MEHP binds to PPAR gamma and selectively regulates interactions with coregulators. Micro-array experiments further showed that this selectivity is translated at the physiological level during adipocyte differentiation. In that context, MEHP functions as a selective PPAR modulator regulating only a subset of PPAR gamma target genes compared to the action of a full agonist. We also explored the action of MEHP on PPARs in an aquatic species, Xenopus laevis, as many xenobiotics are found in aquatic ecosystems. In adult males, micro-array data indicated that MEHP influences liver physiology, possibly through a cross-talk between PPARs and estrogen receptors (ER). In early Xenopus laevis embryos, we showed that PPAR beta/delta exogenous activation by an agonist or by MEHP affects development. Taken together our results widen the concept of endocrine disruption by pinpointing PPARs as key factors in that process.
Resumo:
Health assessment and medical surveillance of workers exposed to combustion nanoparticles are challenging. The aim was to evaluate the feasibility of using exhaled breath condensate (EBC) from healthy volunteers for (1) assessing the lung deposited dose of combustion nanoparticles and (2) determining the resulting oxidative stress by measuring hydrogen peroxide (H2O2) and malondialdehyde (MDA). Methods: Fifteen healthy nonsmoker volunteers were exposed to three different levels of sidestream cigarette smoke under controlled conditions. EBC was repeatedly collected before, during, and 1 and 2 hr after exposure. Exposure variables were measured by direct reading instruments and by active sampling. The different EBC samples were analyzed for particle number concentration (light-scattering-based method) and for selected compounds considered oxidative stress markers. Results: Subjects were exposed to an average airborne concentration up to 4.3×10(5) particles/cm(3) (average geometric size ∼60-80 nm). Up to 10×10(8) particles/mL could be measured in the collected EBC with a broad size distribution (50(th) percentile ∼160 nm), but these biological concentrations were not related to the exposure level of cigarette smoke particles. Although H2O2 and MDA concentrations in EBC increased during exposure, only H2O2 showed a transient normalization 1 hr after exposure and increased afterward. In contrast, MDA levels stayed elevated during the 2 hr post exposure. Conclusions: The use of diffusion light scattering for particle counting proved to be sufficiently sensitive to detect objects in EBC, but lacked the specificity for carbonaceous tobacco smoke particles. Our results suggest two phases of oxidation markers in EBC: first, the initial deposition of particles and gases in the lung lining liquid, and later the start of oxidative stress with associated cell membrane damage. Future studies should extend the follow-up time and should remove gases or particles from the air to allow differentiation between the different sources of H2O2 and MDA.
Resumo:
Rapid amplification of cDNA ends (RACE) is a widely used approach for transcript identification. Random clone selection from the RACE mixture, however, is an ineffective sampling strategy if the dynamic range of transcript abundances is large. To improve sampling efficiency of human transcripts, we hybridized the products of the RACE reaction onto tiling arrays and used the detected exons to delineate a series of reverse-transcriptase (RT)-PCRs, through which the original RACE transcript population was segregated into simpler transcript populations. We independently cloned the products and sequenced randomly selected clones. This approach, RACEarray, is superior to direct cloning and sequencing of RACE products because it specifically targets new transcripts and often results in overall normalization of transcript abundance. We show theoretically and experimentally that this strategy leads indeed to efficient sampling of new transcripts, and we investigated multiplexing the strategy by pooling RACE reactions from multiple interrogated loci before hybridization.
Resumo:
We report on two patients with de novo subtelomeric terminal deletion of chromosome 6p. Patient 1 is an 8-month-old female born with normal growth parameters, typical facial features of 6pter deletion, bilateral corectopia, and protruding tongue. She has severe developmental delay, profound bilateral neurosensory deafness, poor visual contact, and hypsarrhythmia since the age of 6 months. Patient 2 is a 5-year-old male born with normal growth parameters and unilateral hip dysplasia; he has a characteristic facial phenotype, bilateral embryotoxon, and moderate mental retardation. Further characterization of the deletion, using high-resolution array comparative genomic hybridization (array-CGH; Agilent Human Genome kit 244 K), revealed that Patient 1 has a 8.1 Mb 6pter-6p24.3 deletion associated with a contiguous 5.8 Mb 6p24.3-6p24.1 duplication and Patient 2 a 5.7 Mb 6pter-6p25.1 deletion partially overlapping with that of Patient 1. Complementary FISH and array analysis showed that the inv del dup(6) in Patient 1 originated de novo. Our results demonstrate that simple rearrangements are often more complex than defined by standard techniques. We also discuss genotype-phenotype correlations including previously reported cases of deletion 6p.
Resumo:
The objective of this work was to identify key locations for the establishment of soybean (Glycine max) genetic breeding programs, in the Central Region of Brazil. Grain yield data of three maturity groups of soybean genotypes, from regional trials conducted over three years, at 18 locations in Brazilian Cerrado were used. A key location for the early phases of the breeding program was defined as the site that best classifies the winning genotypes in the region. Key locations for the final phases were defined as those sites that best represent each environmental stratum, in relation to the adaptability of the respective winning genotype. This adaptability was estimated by additive main effects and multiplicative interaction (AMMI) model analysis, using the distance between the score of each location in a stratum and the score of the winning genotype, which characterizes such stratum in an AMMI biplot. The locations that best classified the winning genotypes over space and time were Mineiros, Placas and Rio Verde. For the final phases of genotype selection, with data from the three maturity group, the recommended locations were: Buritis, Chapadão do Céu, Iraí, Pamplona, Placas, Planaltina, Rio Verde, Sacramento, Senador Canedo, Uberaba, and Uberlândia.
Resumo:
The aim of our study was to identify and document some key cognitive aptitudes used by ambulance people in emergency situations. Better knowing such aptitudes is necessary for a school of ambulance people in order to improve the selection and education of students. The idea was to better consider real work activity requirements and characteristics, and to develop and implement genuine educational content and selection tools. We followed the work activity of ambulance professionals involved in real emergency situations. Some interventions were filmed and post-analyzed. We completed and validated our analysis by means of interviews with ambulance personnel. We selected some video sequences and used them as a support for the interviews. We identified and documented many different key aptitudes like orientation and spatial sense, the capacity to perform complex cognitive tasks and delicate manipulations in the context of divided attention, as well as diverse aptitudes relevant in collaborative work.
Resumo:
With an annual pavement marking program of approximately $2 million and another $750 thousand invested in maintenance of durable markings each year, the Iowa DOT is seeking every opportunity to provide all-year markings staying in acceptable condition under all weather conditions. The goal of this study is to analyze existing pavement marking practices and to develop a prototype Pavement Marking Management System (PMMS). This report documents the first two phases of a three-phase research project. Phase I includes an overview of the Iowa DOT’s existing practices and a literature review regarding pavement marking practices in other states. Based on this information, a work plan was developed for Phases II and III of this study. Phase II organized the key components necessary to develop a prototype PMMS for the Iowa DOT. The two primary components are (1) performance/life cycle curves for pavement marking products, and (2) an application matrix tailored to the pavement marking products and roadway and environmental conditions faced by the Iowa DOT. Both components will continue to be refined and tailored to Iowa materials and conditions as more performance data becomes available.
Resumo:
The enzyme HMG-CoA reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis, critical not only for normal plant development, but also for the adaptation to demanding environmental conditions. Consistent with this notion, plant HMGR is modulated by many diverse endogenous signals and external stimuli. Protein phosphatase 2A (PP2A) is involved in auxin, abscisic acid, ethylene and brassinosteroid signaling and now emerges as a positive and negative multilevel regulator of plant HMGR, both during normal growth and in response to a variety of stress conditions. The interaction with HMGR is mediated by B" regulatory subunits of PP2A, which are also calcium binding proteins. The new discoveries uncover the potential of PP2A to integrate developmental and calcium-mediated environmental signals in the control of plant HMGR.
Resumo:
The SeDeM Diagram Expert System has been used to study excipients, Captopril and designed formulations for their galenic characterization and to ascertain the critical points of the formula affecting product quality to obtain suitable formulations of Captopril Direct Compression SR Matrix Tablets. The application of the Sedem Diagram Expert System enables selecting excipients with in order to optimize the formula in the preformulation and formulation studies. The methodology is based on the implementation of ICH Q8, establishing the design space of the formula with the use of experiment design, using the parameters of the SeDeM Diagram Expert System as system responses.
Resumo:
BACKGROUND: The visceral (VAT) and subcutaneous (SCAT) adipose tissues play different roles in physiology and obesity. The molecular mechanisms underlying their expansion in obesity and following body weight reduction are poorly defined. METHODOLOGY: C57Bl/6 mice fed a high fat diet (HFD) for 6 months developed low, medium, or high body weight as compared to normal chow fed mice. Mice from each groups were then treated with the cannabinoid receptor 1 antagonist rimonabant or vehicle for 24 days to normalize their body weight. Transcriptomic data for visceral and subcutaneous adipose tissues from each group of mice were obtained and analyzed to identify: i) genes regulated by HFD irrespective of body weight, ii) genes whose expression correlated with body weight, iii) the biological processes activated in each tissue using gene set enrichment analysis (GSEA), iv) the transcriptional programs affected by rimonabant. PRINCIPAL FINDINGS: In VAT, "metabolic" genes encoding enzymes for lipid and steroid biosynthesis and glucose catabolism were down-regulated irrespective of body weight whereas "structure" genes controlling cell architecture and tissue remodeling had expression levels correlated with body weight. In SCAT, the identified "metabolic" and "structure" genes were mostly different from those identified in VAT and were regulated irrespective of body weight. GSEA indicated active adipogenesis in both tissues but a more prominent involvement of tissue stroma in VAT than in SCAT. Rimonabant treatment normalized most gene expression but further reduced oxidative phosphorylation gene expression in SCAT but not in VAT. CONCLUSION: VAT and SCAT show strikingly different gene expression programs in response to high fat diet and rimonabant treatment. Our results may lead to identification of therapeutic targets acting on specific fat depots to control obesity.
Resumo:
Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycemic control still remains a major challenge in the management of diabetic patients. Hyperglycemia triggers formation of advanced glycosylation end products (AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Resumo:
This paper contains a study of the synchronization by homogeneous nonlinear driving of systems that are symmetric in phase space. The main consequence of this symmetry is the ability of the response to synchronize in more than just one way to the driving systems. These different forms of synchronization are to be understood as generalized synchronization states in which the motions of drive and response are in complete correlation, but the phase space distance between them does not converge to zero. In this case the synchronization phenomenon becomes enriched because there is multistability. As a consequence, there appear multiple basins of attraction and special responses to external noise. It is shown, by means of a computer simulation of various nonlinear systems, that: (i) the decay to the generalized synchronization states is exponential, (ii) the basins of attraction are symmetric, usually complicated, frequently fractal, and robust under the changes in the parameters, and (iii) the effect of external noise is to weaken the synchronization, and in some cases to produce jumps between the various synchronization states available