907 resultados para Magnetohydrodynamic generators.
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
Power system policies are broadly on track to escalate the use of renewable energy resources in electric power generation. Integration of dispersed generation to the utility network not only intensifies the benefits of renewable generation but also introduces further advantages such as power quality enhancement and freedom of power generation for the consumers. However, issues arise from the integration of distributed generators to the existing utility grid are as significant as its benefits. The issues are aggravated as the number of grid-connected distributed generators increases. Therefore, power quality demands become stricter to ensure a safe and proper advancement towards the emerging smart grid. In this regard, system protection is the area that is highly affected as the grid-connected distributed generation share in electricity generation increases. Islanding detection, amongst all protection issues, is the most important concern for a power system with high penetration of distributed sources. Islanding occurs when a portion of the distribution network which includes one or more distributed generation units and local loads is disconnected from the remaining portion of the grid. Upon formation of a power island, it remains energized due to the presence of one or more distributed sources. This thesis introduces a new islanding detection technique based on an enhanced multi-layer scheme that shows superior performance over the existing techniques. It provides improved solutions for safety and protection of power systems and distributed sources that are capable of operating in grid-connected mode. The proposed active method offers negligible non-detection zone. It is applicable to micro-grids with a number of distributed generation sources without sacrificing the dynamic response of the system. In addition, the information obtained from the proposed scheme allows for smooth transition to stand-alone operation if required. The proposed technique paves the path towards a comprehensive protection solution for future power networks. The proposed method is converter-resident and all power conversion systems that are operating based on power electronics converters can benefit from this method. The theoretical analysis is presented, and extensive simulation results confirm the validity of the analytical work.
Resumo:
This thesis explores two distinct parts of mitochondrial physiology: the role of mitochondria in generation of reactive oxygen species (ROS) and mitochondrial morphology and dynamics within cells. The first area of research is covered in Chapters 1-8. Mitochondrial biofunctionality and ROS production are discussed in Chapter 1, followed by the strategy of targeting bioactive compounds to mitochondria by linking them to lipophilic triphenylphosphonium cations (TPP) (Chapter 2). ROS sensors relevant to the research are reviewed in Chapter 3. Chapter 4 presents design and synthesis of novel probes for superoxide detection in mitochondria (MitoNeo-D), cytosol (Neo-D) and extracellular environment (ExCellNeo-D). The results of biological validation of MitoNeo-D and Neo-D performed in the MRC MBU in Cambridge are presented in Chapter 5. A dicationic hydrogen peroxide sensor that utilizes in situ click chemistry is discussed in Chapter 6. Preliminary work on the synthesis of mitochondria-targeted superoxide generators, which led to the development of mitochondria-targeted analogue of paraquat, MitoPQ, is presented in Chapter 7. A set of bifunctional probes (BCN-Mal, BCN-E-BCN and Mito-iTag) for assessing the redox states of protein thiols is discussed in Chapter 8 along with their biological validation. The second part of the thesis is aimed at the study of mitochondrial morphology and dynamics and is presented in Chapters 9-11. Chapter 9 provides background on the classes of fluorophores relevant to the research, the phenomenon of fluorescence quenching and the principle of photoactivation with examples of photoactivatable fluorophores. Next, the background on mitochondrial morphology and heterogeneity is presented in Chapter 10, followed by the ways of imaging and tracking mitochondria within cells by conventional fluorophores and by photoactivatable fluorophores exploiting super-resolution microscopy. Chapter 11 presents the design and synthesis of four photoactivatable fluorophores for mitochondrial tracking, MitoPhotoRhod110, MitoPhotoNIR, Photo-E+, MitoPhoto-E+, along with results of biological validation of MitoPhotoNIR. The results and discussion concludes with Chapter 12, which is a summary and suggestions for future work, followed by the chemistry experimental procedures (Chapter 13), materials and methods for biological experiments (Chapter 14) and references.
Resumo:
Las representaciones sociales son una construcción de significados que las personas otorgan a un objeto en este caso el tratamiento oncológico. En el mundo, el cáncer es una enfermedad de alta prevalencia y sus tratamientos suelen generar numerosos efectos secundarios, pero a la vez es el recurso médico disponible para controlar la enfermedad. Este estudio cualitativo tuvo como objetivo analizar las representaciones sociales del tratamiento oncológico en población colombiana. Participaron voluntariamente 20 personas seleccionadas por conveniencia. Se realizaron entrevistas abiertas y se analizaron los resultados a través del análisis temático y se interpretaron con base en la teoría de las representaciones sociales. Los resultados indicaron que las personas representan el tratamiento oncológico convencional, predominantemente como quimioterapia, generadores de sufrimiento, miedo, alto costo físico, emocional y económico; así como una apuesta en la que la ganancia puede ser la prolongación de la vida o la remisión. Se discuten los resultados y sus implicaciones.
Resumo:
Introduction: Among young people, regular or alcohol abuse seems to ally with individual factors, which congregate to other generators behaviors health risk, in social environment, including family and school. The consumption of alcoholic beverages in the younger age groups, according to the World Development Report goes beyond 60%. In the Portuguese case, the Alentejo is the region that recorded higher consumption among schoolchildren. Objectives: This study aims to know the personal inluences of family, of belonging to the group and the school environment, on the withdrawal and consumption habits among young people. Methods: A qualitative nature of research, using comprehensive semi-structured interviews. The study was developed in a school district of Evora, Portugal. The sample consists of ten students from the 8th school grade, ive non-consumers-ive consumers aged between 13 and 15 years old. Results: The trial takes place between 12 and 14 years old as a result of curiosity, explicit or tacit motivation, “give style”, the environment, entertainment and observing behavior. Among the effects of intake indicated as motivators consumption highlight the joy of reaching states and willingness. Family members tend to encourage moderate drinking on festive occasions. family models exaggerated consumption repudiate ingestion. The elements of the group of belonging tend to motivate explicitly, the intake among consumers students. The school promotes initiatives on the theme, punctually. Conclusions: The consumption of alcohol among young people suffer the personal, family and belonging group inluences. The initiatives in school tend to have no effect.
Resumo:
Against a backdrop of rapidly increasing worldwide population and growing energy demand, the development of renewable energy technologies has become of primary importance in the effort to reduce greenhouse gas emissions. However, it is often technically and economically infeasible to transport discontinuous renewable electricity for long distances to the shore. Another shortcoming of non-programmable renewable power is its integration into the onshore grid without affecting the dispatching process. On the other hand, the offshore oil & gas industry is striving to reduce overall carbon footprint from onsite power generators and limiting large expenses associated to carrying electricity from remote offshore facilities. Furthermore, the increased complexity and expansion towards challenging areas of offshore hydrocarbons operations call for higher attention to safety and environmental protection issues from major accident hazards. Innovative hybrid energy systems, as Power-to-Gas (P2G), Power-to-Liquid (P2L) and Gas-to-Power (G2P) options, implemented at offshore locations, would offer the opportunity to overcome challenges of both renewable and oil & gas sectors. This study aims at the development of systematic methodologies based on proper sustainability and safety performance indicators supporting the choice of P2G, P2L and G2P hybrid energy options for offshore green projects in early design phases. An in-depth analysis of the different offshore hybrid strategies was performed. The literature reviews on existing methods proposing metrics to assess sustainability of hybrid energy systems, inherent safety of process routes in conceptual design stage and environmental protection of installations from oil and chemical accidental spills were carried out. To fill the gaps, a suite of specific decision-making methodologies was developed, based on representative multi-criteria indicators addressing technical, economic, environmental and societal aspects of alternative options. A set of five case-studies was defined, covering different offshore scenarios of concern, to provide an assessment of the effectiveness and value of the developed tools.
Resumo:
In high-energy hadron collisions, the production at parton level of heavy-flavour quarks (charm and bottom) is described by perturbative Quantum Chromo-dynamics (pQCD) calculations, given the hard scale set by the quark masses. However, in hadron-hadron collisions, the predictions of the heavy-flavour hadrons eventually produced entail the knowledge of the parton distribution functions, as well as an accurate description of the hadronisation process. The latter is taken into account via the fragmentation functions measured at e$^+$e$^-$ colliders or in ep collisions, but several observations in LHC Run 1 and Run 2 data challenged this picture. In this dissertation, I studied the charm hadronisation in proton-proton collision at $\sqrt{s}$ = 13 TeV with the ALICE experiment at the LHC, making use of a large statistic data sample collected during LHC Run 2. The production of heavy-flavour in this collision system will be discussed, also describing various hadronisation models implemented in commonly used event generators, which try to reproduce experimental data, taking into account the unexpected results at LHC regarding the enhanced production of charmed baryons. The role of multiple parton interaction (MPI) will also be presented and how it affects the total charm production as a function of multiplicity. The ALICE apparatus will be described before moving to the experimental results, which are related to the measurement of relative production rates of the charm hadrons $\Sigma_c^{0,++}$ and $\Lambda_c^+$, which allow us to study the hadronisation mechanisms of charm quarks and to give constraints to different hadronisation models. Furthermore, the analysis of D mesons ($D^{0}$, $D^{+}$ and $D^{*+}$) as a function of charged-particle multiplicity and spherocity will be shown, investigating the role of multi-parton interactions. This research is relevant per se and for the mission of the ALICE experiment at the LHC, which is devoted to the study of Quark-Gluon Plasma.