12 resultados para Magnetohydrodynamic generators.
em CaltechTHESIS
Resumo:
A series of experiments was conducted on the use of a device to passively generate vortex rings, henceforth a passive vortex generator (PVG). The device is intended as a means of propulsion for underwater vehicles, as the use of vortex rings has been shown to decrease the fuel consumption of a vehicle by up to 40% Ruiz (2010).
The PVG was constructed out of a collapsible tube encased in a rigid, airtight box. By adjusting the pressure within the airtight box while fluid was flowing through the tube, it was possible to create a pulsed jet with vortex rings via self-excited oscillations of the collapsible tube.
A study of PVG integration into an existing autonomous underwater vehicle (AUV) system was conducted. A small AUV was used to retrofit a PVG with limited alterations to the original vehicle. The PVG-integrated AUV was used for self-propelled testing to measure the hydrodynamic (Froude) efficiency of the system. The results show that the PVG-integrated AUV had a 22% increase in the Froude efficiency using a pulsed jet over a steady jet. The maximum increase in the Froude efficiency was realized when the formation time of the pulsed jet, a nondimensional time to characterize vortex ring formation, was coincident with vortex ring pinch-off. This is consistent with previous studies that indicate that the maximization of efficiency for a pulsed jet vehicle is realized when the formation of vortex rings maximizes the vortex ring energy and size.
The other study was a parameter study of the physical dimensions of a PVG. This study was conducted to determine the effect of the tube diameter and length on the oscillation characteristics such as the frequency. By changing the tube diameter and length by factors of 3, the frequency of self-excited oscillations was found to scale as f~D_0^{-1/2} L_0^0, where D_0 is the tube diameter and L_0 the tube length. The mechanism of operation is suggested to rely on traveling waves between the tube throat and the end of the tube. A model based on this mechanism yields oscillation frequencies that are within the range observed by the experiment.
Resumo:
We simulate incompressible, MHD turbulence using a pseudo-spectral code. Our major conclusions are as follows.
1) MHD turbulence is most conveniently described in terms of counter propagating shear Alfvén and slow waves. Shear Alfvén waves control the cascade dynamics. Slow waves play a passive role and adopt the spectrum set by the shear Alfvén waves. Cascades composed entirely of shear Alfvén waves do not generate a significant measure of slow waves.
2) MHD turbulence is anisotropic with energy cascading more rapidly along k⊥ than along k∥, where k⊥ and k∥ refer to wavevector components perpendicular and parallel to the local magnetic field. Anisotropy increases with increasing k⊥ such that excited modes are confined inside a cone bounded by k∥ ∝ kγ⊥ where γ less than 1. The opening angle of the cone, θ(k⊥) ∝ k-(1-γ)⊥, defines the scale dependent anisotropy.
3) MHD turbulence is generically strong in the sense that the waves which comprise it suffer order unity distortions on timescales comparable to their periods. Nevertheless, turbulent fluctuations are small deep inside the inertial range. Their energy density is less than that of the background field by a factor θ2 (k⊥)≪1.
4) MHD cascades are best understood geometrically. Wave packets suffer distortions as they move along magnetic field lines perturbed by counter propagating waves. Field lines perturbed by unidirectional waves map planes perpendicular to the local field into each other. Shear Alfvén waves are responsible for the mapping's shear and slow waves for its dilatation. The amplitude of the former exceeds that of the latter by 1/θ(k⊥) which accounts for dominance of the shear Alfvén waves in controlling the cascade dynamics.
5) Passive scalars mixed by MHD turbulence adopt the same power spectrum as the velocity and magnetic field perturbations.
6) Decaying MHD turbulence is unstable to an increase of the imbalance between the flux of waves propagating in opposite directions along the magnetic field. Forced MHD turbulence displays order unity fluctuations with respect to the balanced state if excited at low k by δ(t) correlated forcing. It appears to be statistically stable to the unlimited growth of imbalance.
7) Gradients of the dynamic variables are focused into sheets aligned with the magnetic field whose thickness is comparable to the dissipation scale. Sheets formed by oppositely directed waves are uncorrelated. We suspect that these are vortex sheets which the mean magnetic field prevents from rolling up.
8) Items (1)-(5) lend support to the model of strong MHD turbulence put forth by Goldreich and Sridhar (1995, 1997). Results from our simulations are also consistent with the GS prediction γ = 2/3. The sole not able discrepancy is that the 1D power law spectra, E(k⊥) ∝ k-∝⊥, determined from our simulations exhibit ∝ ≈ 3/2, whereas the GS model predicts ∝ = 5/3.
Resumo:
This thesis discusses various methods for learning and optimization in adaptive systems. Overall, it emphasizes the relationship between optimization, learning, and adaptive systems; and it illustrates the influence of underlying hardware upon the construction of efficient algorithms for learning and optimization. Chapter 1 provides a summary and an overview.
Chapter 2 discusses a method for using feed-forward neural networks to filter the noise out of noise-corrupted signals. The networks use back-propagation learning, but they use it in a way that qualifies as unsupervised learning. The networks adapt based only on the raw input data-there are no external teachers providing information on correct operation during training. The chapter contains an analysis of the learning and develops a simple expression that, based only on the geometry of the network, predicts performance.
Chapter 3 explains a simple model of the piriform cortex, an area in the brain involved in the processing of olfactory information. The model was used to explore the possible effect of acetylcholine on learning and on odor classification. According to the model, the piriform cortex can classify odors better when acetylcholine is present during learning but not present during recall. This is interesting since it suggests that learning and recall might be separate neurochemical modes (corresponding to whether or not acetylcholine is present). When acetylcholine is turned off at all times, even during learning, the model exhibits behavior somewhat similar to Alzheimer's disease, a disease associated with the degeneration of cells that distribute acetylcholine.
Chapters 4, 5, and 6 discuss algorithms appropriate for adaptive systems implemented entirely in analog hardware. The algorithms inject noise into the systems and correlate the noise with the outputs of the systems. This allows them to estimate gradients and to implement noisy versions of gradient descent, without having to calculate gradients explicitly. The methods require only noise generators, adders, multipliers, integrators, and differentiators; and the number of devices needed scales linearly with the number of adjustable parameters in the adaptive systems. With the exception of one global signal, the algorithms require only local information exchange.
Resumo:
Rhythmic motor behaviors in all animals appear to be under the control of "central pattern generator" circuits, neural circuits which can produce output patterns appropriate for behavior even when isolated from their normal peripheral inputs. Insects have been a useful model system in which to study the control of legged terrestrial locomotion. Much is known about walking in insects at the behavioral level, but to date there has been no clear demonstration that a central pattern generator for walking exists. The focus of this thesis is to explore the central neural basis for locomotion in the locust, Schistocerca americana.
Rhythmic motor patterns could be evoked in leg motor neurons of isolated thoracic ganglia of locusts by the muscarinic agonist pilocarpine. These motor patterns would be appropriate for the movement of single legs during walking. Rhythmic patterns could be evoked in all three thoracic ganglia, but the segmental rhythms differed in their sensitivities to pilocarpine, their frequencies, and the phase relationships of motor neuron antagonists. These different patterns could be generated by a simple adaptable model circuit, which was both simulated and implemented in VLSI hardware. The intersegmental coordination of leg motor rhythms was then examined in preparations of isolated chains of thoracic ganglia. Correlations between motor patterns in different thoracic ganglia indicated that central coupling between segmental pattern generators is likely to contribute to the coordination of the legs during walking.
The work described here clearly demonstrates that segmental pattern generators for walking exist in insects. The pattern generators produce motor outputs which are likely to contribute to the coordination of the joints of a limb, as well as the coordination of different limbs. These studies lay the groundwork for further studies to determine the relative contributions of central and sensory neural mechanisms to terrestrial walking.
Resumo:
One of the critical problems currently being faced by agriculture industry in developing nations is the alarming rate of groundwater depletion. Irrigation accounts for over 70% of the total groundwater withdrawn everyday. Compounding this issue is the use of polluting diesel generators to pump groundwater for irrigation. This has made irrigation not only the biggest consumer of groundwater but also one of the major contributors to green house gases. The aim of this thesis is to present a solution to the energy-water nexus. To make agriculture less dependent on fossil fuels, the use of a solar-powered Stirling engine as the power generator for on-farm energy needs is discussed. The Stirling cycle is revisited and practical and ideal Stirling cycles are compared. Based on agricultural needs and financial constraints faced by farmers in developing countries, the use of a Fresnel lens as a solar-concentrator and a Beta-type Stirling engine unit is suggested for sustainable power generation on the farms. To reduce the groundwater consumption and to make irrigation more sustainable, the conceptual idea of using a Stirling engine in drip irrigation is presented. To tackle the shortage of over 37 million tonnes of cold-storage in India, the idea of cost-effective solar-powered on-farm cold storage unit is discussed.
Resumo:
Experimental demonstrations and theoretical analyses of a new electromechanical energy conversion process which is made feasible only by the unique properties of superconductors are presented in this dissertation. This energy conversion process is characterized by a highly efficient direct energy transformation from microwave energy into mechanical energy or vice versa and can be achieved at high power level. It is an application of a well established physical principle known as the adiabatic theorem (Boltzmann-Ehrenfest theorem) and in this case time dependent superconducting boundaries provide the necessary interface between the microwave energy on one hand and the mechanical work on the other. The mechanism which brings about the conversion is another known phenomenon - the Doppler effect. The resonant frequency of a superconducting resonator undergoes continuous infinitesimal shifts when the resonator boundaries are adiabatically changed in time by an external mechanical mechanism. These small frequency shifts can accumulate coherently over an extended period of time to produce a macroscopic shift when the resonator remains resonantly excited throughout this process. In addition, the electromagnetic energy in s ide the resonator which is proportional to the oscillation frequency is al so accordingly changed so that a direct conversion between electromagnetic and mechanical energies takes place. The intrinsically high efficiency of this process is due to the electromechanical interactions involved in the conversion rather than a process of thermodynamic nature and therefore is not limited by the thermodynamic value.
A highly reentrant superconducting resonator resonating in the range of 90 to 160 MHz was used for demonstrating this new conversion technique. The resonant frequency was mechanically modulated at a rate of two kilohertz. Experimental results showed that the time evolution of the electromagnetic energy inside this frequency modulated (FM) superconducting resonator indeed behaved as predicted and thus demonstrated the unique features of this process. A proposed usage of FM superconducting resonators as electromechanical energy conversion devices is given along with some practical design considerations. This device seems to be very promising in producing high power (~10W/cm^3) microwave energy at 10 - 30 GHz.
Weakly coupled FM resonator system is also analytically studied for its potential applications. This system shows an interesting switching characteristic with which the spatial distribution of microwave energies can be manipulated by external means. It was found that if the modulation was properly applied, a high degree (>95%) of unidirectional energy transfer from one resonator to the other could be accomplished. Applications of this characteristic to fabricate high efficiency energy switching devices and high power microwave pulse generators are also found feasible with present superconducting technology.
Resumo:
This thesis consists of two parts. In Part I, we develop a multipole moment formalism in general relativity and use it to analyze the motion and precession of compact bodies. More specifically, the generic, vacuum, dynamical gravitational field of the exterior universe in the vicinity of a freely moving body is expanded in positive powers of the distance r away from the body's spatial origin (i.e., in the distance r from its timelike-geodesic world line). The expansion coefficients, called "external multipole moments,'' are defined covariantly in terms of the Riemann curvature tensor and its spatial derivatives evaluated on the body's central world line. In a carefully chosen class of de Donder coordinates, the expansion of the external field involves only integral powers of r ; no logarithmic terms occur. The expansion is used to derive higher-order corrections to previously known laws of motion and precession for black holes and other bodies. The resulting laws of motion and precession are expressed in terms of couplings of the time derivatives of the body's quadrupole and octopole moments to the external moments, i.e., to the external curvature and its gradient.
In part II, we study the interaction of magnetohydrodynamic (MHD) waves in a black-hole magnetosphere with the "dragging of inertial frames" effect of the hole's rotation - i.e., with the hole's "gravitomagnetic field." More specifically: we first rewrite the laws of perfect general relativistic magnetohydrodynamics (GRMHD) in 3+1 language in a general spacetime, in terms of quantities (magnetic field, flow velocity, ...) that would be measured by the ''fiducial observers” whose world lines are orthogonal to (arbitrarily chosen) hypersurfaces of constant time. We then specialize to a stationary spacetime and MHD flow with one arbitrary spatial symmetry (e.g., the stationary magnetosphere of a Kerr black hole); and for this spacetime we reduce the GRMHD equations to a set of algebraic equations. The general features of the resulting stationary, symmetric GRMHD magnetospheric solutions are discussed, including the Blandford-Znajek effect in which the gravitomagnetic field interacts with the magnetosphere to produce an outflowing jet. Then in a specific model spacetime with two spatial symmetries, which captures the key features of the Kerr geometry, we derive the GRMHD equations which govern weak, linealized perturbations of a stationary magnetosphere with outflowing jet. These perturbation equations are then Fourier analyzed in time t and in the symmetry coordinate x, and subsequently solved numerically. The numerical solutions describe the interaction of MHD waves with the gravitomagnetic field. It is found that, among other features, when an oscillatory external force is applied to the region of the magnetosphere where plasma (e+e-) is being created, the magnetosphere responds especially strongly at a particular, resonant, driving frequency. The resonant frequency is that for which the perturbations appear to be stationary (time independent) in the common rest frame of the freshly created plasma and the rotating magnetic field lines. The magnetosphere of a rotating black hole, when buffeted by nonaxisymmetric magnetic fields anchored in a surrounding accretion disk, might exhibit an analogous resonance. If so then the hole's outflowing jet might be modulated at resonant frequencies ω=(m/2) ΩH where m is an integer and ΩH is the hole's angular velocity.
Resumo:
A noncommutative 2-torus is one of the main toy models of noncommutative geometry, and a noncommutative n-torus is a straightforward generalization of it. In 1980, Pimsner and Voiculescu in [17] described a 6-term exact sequence, which allows for the computation of the K-theory of noncommutative tori. It follows that both even and odd K-groups of n-dimensional noncommutative tori are free abelian groups on 2n-1 generators. In 1981, the Powers-Rieffel projector was described [19], which, together with the class of identity, generates the even K-theory of noncommutative 2-tori. In 1984, Elliott [10] computed trace and Chern character on these K-groups. According to Rieffel [20], the odd K-theory of a noncommutative n-torus coincides with the group of connected components of the elements of the algebra. In particular, generators of K-theory can be chosen to be invertible elements of the algebra. In Chapter 1, we derive an explicit formula for the First nontrivial generator of the odd K-theory of noncommutative tori. This gives the full set of generators for the odd K-theory of noncommutative 3-tori and 4-tori.
In Chapter 2, we apply the graded-commutative framework of differential geometry to the polynomial subalgebra of the noncommutative torus algebra. We use the framework of differential geometry described in [27], [14], [25], [26]. In order to apply this framework to noncommutative torus, the notion of the graded-commutative algebra has to be generalized: the "signs" should be allowed to take values in U(1), rather than just {-1,1}. Such generalization is well-known (see, e.g., [8] in the context of linear algebra). We reformulate relevant results of [27], [14], [25], [26] using this extended notion of sign. We show how this framework can be used to construct differential operators, differential forms, and jet spaces on noncommutative tori. Then, we compare the constructed differential forms to the ones, obtained from the spectral triple of the noncommutative torus. Sections 2.1-2.3 recall the basic notions from [27], [14], [25], [26], with the required change of the notion of "sign". In Section 2.4, we apply these notions to the polynomial subalgebra of the noncommutative torus algebra. This polynomial subalgebra is similar to a free graded-commutative algebra. We show that, when restricted to the polynomial subalgebra, Connes construction of differential forms gives the same answer as the one obtained from the graded-commutative differential geometry. One may try to extend these notions to the smooth noncommutative torus algebra, but this was not done in this work.
A reconstruction of the Beilinson-Bloch regulator (for curves) via Fredholm modules was given by Eugene Ha in [12]. However, the proof in [12] contains a critical gap; in Chapter 3, we close this gap. More specifically, we do this by obtaining some technical results, and by proving Property 4 of Section 3.7 (see Theorem 3.9.4), which implies that such reformulation is, indeed, possible. The main motivation for this reformulation is the longer-term goal of finding possible analogs of the second K-group (in the context of algebraic geometry and K-theory of rings) and of the regulators for noncommutative spaces. This work should be seen as a necessary preliminary step for that purpose.
For the convenience of the reader, we also give a short description of the results from [12], as well as some background material on central extensions and Connes-Karoubi character.
Resumo:
This thesis consists of two independent chapters. The first chapter deals with universal algebra. It is shown, in von Neumann-Bernays-Gӧdel set theory, that free images of partial algebras exist in arbitrary varieties. It follows from this, as set-complete Boolean algebras form a variety, that there exist free set-complete Boolean algebras on any class of generators. This appears to contradict a well-known result of A. Hales and H. Gaifman, stating that there is no complete Boolean algebra on any infinite set of generators. However, it does not, as the algebras constructed in this chapter are allowed to be proper classes. The second chapter deals with positive elementary inductions. It is shown that, in any reasonable structure ᶆ, the inductive closure ordinal of ᶆ is admissible, by showing it is equal to an ordinal measuring the saturation of ᶆ. This is also used to show that non-recursively saturated models of the theories ACF, RCF, and DCF have inductive closure ordinals greater than ω.
Resumo:
Politically the Colorado river is an interstate as well as an international stream. Physically the basin divides itself distinctly into three sections. The upper section from head waters to the mouth of San Juan comprises about 40 percent of the total of the basin and affords about 87 percent of the total runoff, or an average of about 15 000 000 acre feet per annum. High mountains and cold weather are found in this section. The middle section from the mouth of San Juan to the mouth of the Williams comprises about 35 percent of the total area of the basin and supplies about 7 percent of the annual runoff. Narrow canyons and mild weather prevail in this section. The lower third of the basin is composed of mainly hot arid plains of low altitude. It comprises some 25 percent of the total area of the basin and furnishes about 6 percent of the average annual runoff.
The proposed Diamond Creek reservoir is located in the middle section and is wholly within the boundary of Arizona. The site is at the mouth of Diamond Creek and is only 16 m. from Beach Spring, a station on the Santa Fe railroad. It is solely a power project with a limited storage capacity. The dam which creats the reservoir is of the gravity type to be constructed across the river. The walls and foundation are of granite. For a dam of 290 feet in height, the back water will be about 25 m. up the river.
The power house will be placed right below the dam perpendicular to the axis of the river. It is entirely a concrete structure. The power installation would consist of eighteen 37 500 H.P. vertical, variable head turbines, directly connected to 28 000 kwa. 110 000 v. 3 phase, 60 cycle generators with necessary switching and auxiliary apparatus. Each unit is to be fed by a separate penstock wholly embedded into the masonry.
Concerning the power market, the main electric transmission lines would extend to Prescott, Phoenix, Mesa, Florence etc. The mining regions of the mountains of Arizona would be the most adequate market. The demand of power in the above named places might not be large at present. It will, from the observation of the writer, rapidly increase with the wonderful advancement of all kinds of industrial development.
All these things being comparatively feasible, there is one difficult problem: that is the silt. At the Diamond Creek dam site the average annual silt discharge is about 82 650 acre feet. The geographical conditions, however, will not permit silt deposites right in the reservoir. So this design will be made under the assumption given in Section 4.
The silt condition and the change of lower course of the Colorado are much like those of the Yellow River in China. But one thing is different. On the Colorado most of the canyon walls are of granite, while those on the Yellow are of alluvial loess: so it is very hard, if not impossible, to get a favorable dam site on the lower part. As a visitor to this country, I should like to see the full development of the Colorado: but how about THE YELLOW!
Resumo:
Climate change is arguably the most critical issue facing our generation and the next. As we move towards a sustainable future, the grid is rapidly evolving with the integration of more and more renewable energy resources and the emergence of electric vehicles. In particular, large scale adoption of residential and commercial solar photovoltaics (PV) plants is completely changing the traditional slowly-varying unidirectional power flow nature of distribution systems. High share of intermittent renewables pose several technical challenges, including voltage and frequency control. But along with these challenges, renewable generators also bring with them millions of new DC-AC inverter controllers each year. These fast power electronic devices can provide an unprecedented opportunity to increase energy efficiency and improve power quality, if combined with well-designed inverter control algorithms. The main goal of this dissertation is to develop scalable power flow optimization and control methods that achieve system-wide efficiency, reliability, and robustness for power distribution networks of future with high penetration of distributed inverter-based renewable generators.
Proposed solutions to power flow control problems in the literature range from fully centralized to fully local ones. In this thesis, we will focus on the two ends of this spectrum. In the first half of this thesis (chapters 2 and 3), we seek optimal solutions to voltage control problems provided a centralized architecture with complete information. These solutions are particularly important for better understanding the overall system behavior and can serve as a benchmark to compare the performance of other control methods against. To this end, we first propose a branch flow model (BFM) for the analysis and optimization of radial and meshed networks. This model leads to a new approach to solve optimal power flow (OPF) problems using a two step relaxation procedure, which has proven to be both reliable and computationally efficient in dealing with the non-convexity of power flow equations in radial and weakly-meshed distribution networks. We will then apply the results to fast time- scale inverter var control problem and evaluate the performance on real-world circuits in Southern California Edison’s service territory.
The second half (chapters 4 and 5), however, is dedicated to study local control approaches, as they are the only options available for immediate implementation on today’s distribution networks that lack sufficient monitoring and communication infrastructure. In particular, we will follow a reverse and forward engineering approach to study the recently proposed piecewise linear volt/var control curves. It is the aim of this dissertation to tackle some key problems in these two areas and contribute by providing rigorous theoretical basis for future work.
Resumo:
A variety (equational class) of lattices is said to be finitely based if there exists a finite set of identities defining the variety. Let M∞n denote the lattice variety generated by all modular lattices of width not exceeding n. M∞1 and M∞2 are both the class of all distributive lattices and consequently finitely based. B. Jónsson has shown that M∞3 is also finitely based. On the other hand, K. Baker has shown that M∞n is not finitely based for 5 ≤ n ˂ ω. This thesis settles the finite basis problem for M∞4. M∞4 is shown to be finitely based by proving the stronger result that there exist ten varieties which properly contain M∞4 and such that any variety which properly contains M∞4 contains one of these ten varieties.
The methods developed also yield a characterization of sub-directly irreducible width four modular lattices. From this characterization further results are derived. It is shown that the free M∞4 lattice with n generators is finite. A variety with exactly k covers is exhibited for all k ≥ 15. It is further shown that there are 2Ӄo sub- varieties of M∞4.