997 resultados para MU-OXALATO
Resumo:
Choline citrate (CC) and acetylmethionine (AM) are lipotropic drugs used in several pharmaceutical formulations. The objective of this research was to develop and validate a high performance liquid chromatographic (HPLC) method for simultaneous determination of CC and AM in injectable solutions, aiming its application in routine analysis for quality control of these pharmaceutical formulations. The method was validated using a Shim-Pack (R) C18 (250 x 4.6 mm, 5 mu m) column. The mobile phase was constituted of 25 mM potassium phosphate buffer solution, pH 5.7, adjusted with 10 % orthophosphoric acid, acetonitrile and methanol (88:10:2, v/v/v). The flow rate was 1.1 mL.min(-1) and the UV detection was made at 210 nm. The analyses were made at room temperature (25 +/- 1 degrees C). The method is precise, selective, accurate and robust, and was successfully applied for simultaneous quantitative determination of CC and AM in injectables.
Resumo:
A reversed-phase high performance liquid chromatographic (RP-HPLC) method for determination of econazole nitrate, preservatives (methylparaben and propylparaben) and its main impurities (4-chlorobenzl alcohol and alpha-(2,4-dicholorophenyl)-1H-imidazole-1-ethanol) in cream formulations, has been developed and validated. Separation was achieved on a column Bondclone (R) C18 (300 mm x 3.9 mm i.d., 10 mu m) using a gradient method with mobile phase composed of methanol and water. The flow rate was 1.4 mL min(-1), temperature of the column was 25 C and the detection was made at 220 nm. Miconazole nitrate was used as an internal standard. The total run time was less than 15 min, The analytical curves presented coefficient of correlation upper to 0.99 and detection and quantitation limits were calculated for all molecules. Excellent accuracy and precision were obtained for econazole nitrate. Recoveries varied from 97.9 to 102.3% and intra- and inter-day precisions, calculated as relative standard deviation (R.S.D), were lower than 2.2%. Specificity, robustness and assay for econazole nitrate were also determined. The method allowed the quantitative determination of econazole nitrate, its impurities and preservatives and could be applied as a stability-indicating method for econazole nitrate in cream formulations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A simple spectrophotometric method has been developed,for the determination of fenoterol hydrobromide (FH) in tablets, drops and syrup, as the only active principle and associated with ibuprofen. The method is based on the oxidative coupling reaction of the FH with 3-methyl-2-benzothiazolinone hydrazone (MBTH) and ceric sulphate as oxidant reagent. The mixture of the drug, MBTH and ceric sulfate, in acid medium, produces a red brown color compound, with absorption maximum at 475 nm. The calibration curve was linear over a concentration range from 3.0 to 12.0 mu g/mL, with correlation coefficient of 0.9998. The different experimental parameters affecting the development and stability of the color compound were carefully studied and optimized. The method was applied successfully to assay FH in dosage forms and simulated samples. The coefficient of variation was from 0.25 % to 0.82 % and average recoveries of the standard from 98 % to 102 %. The excipients (tablets and drops) did not interfere in the analysis and the results showed that method can be used for determination of the FH isolated or associated with ibuprofen with precision, accuracy and specificity. In case of syrup, the interference in the analysis suggests a possible reaction between vehicle components with MBTH.
Resumo:
introducing a pharmaceutical product on the market involves several stages of research. The scale-up stage comprises the integration of previous phases of development and their integration. This phase is extremely important since many process limitations which do not appear on the small scale become significant on the transposition to a large one. Since scientific literature presents only a few reports about the characterization of emulsified systems involving their scaling-up, this research work aimed at evaluating physical properties of non-ionic and anionic emulsions during their manufacturing phases: laboratory stage and scale-up. Prototype non-ionic (glyceryl monostearate) and anionic (potassium cetyl phosphate) emulsified systems had the physical properties by the determination of the droplet size (D[4,3 1, mu m) and rheology profile. Transposition occurred from a batch of 500-50,000 g. Semi-industrial manufacturing involved distinct conditions: intensity of agitation and homogenization. Comparing the non-ionic and anionic systems, it was observed that anionic emulsifiers generated systems with smaller droplet size and higher viscosity in laboratory scale. Besides that, for the concentrations tested, augmentation of the glyceryl monostearate emulsifier content provided formulations with better physical characteristics. For systems with potassium cetyl phosphate, droplet size increased with the elevation of the emulsifier concentration, suggesting inadequate stability. The scale-up provoked more significant alterations on the rheological profile and droplet size on the anionic systems than the non-ionic. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to develop and validate selective and sensitive methods for quantitative determination of an antibacterial agent, gemifloxacin, in tablets by high performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). The HPLC method was carried out on a LiChrospher (R) 100 RP-8e, 5 mu m (125 x 4 mm) column with a mobile phase composed of tetrahydrofuran-water (25:75, v/v) with 0.5 % of triethylamine and pH adjusted to 3.0 with orthophosphoric acid. The CZE method was performed using 50 mM sodium tetraborate buffer (pH 8.6). Samples were injected hydrodynamicaly (0.5 psi, 5 s) and the electrophoretic system was operated under normal polarity, at +20 kV and capillary temperature of 18 degrees C. A fused-silica capillary 40.2 cm (30 cm effective length) x 75 mu m i.d. was used. Both, HPLC and CZE could be interesting and efficient techniques to be applied for quality control in pharmaceutical industries.
Resumo:
A simple, fast, inexpensive and reliable capillary zone electrophoresis (CZE) method for the determination of econazole nitrate in cream formulations has been developed and validated. Optimum conditions comprised a pH 2.5 phosphate buffer at 20 mmol L(-1) concentration, +30 kV applied voltage in a 31.5 cm x 50 mu m I.D. capillary. Direct UV detection at 200 nm led to an adequate sensitivity without interference from sample excipients. A single extraction step of the cream sample in hydrochloric acid was performed prior to injection. Imidazole (100 mu g mL(-1)) was used as internal standard. Econazole nitrate migrates in approximately 1.2 min. The analytical curve presented a coefficient of correlation of 0.9995. Detection and quantitation limits were 1.85 and 5.62 mu g mL(-1), respectively. Excellent accuracy and precision were obtained. Recoveries varied from 98.1 to 102.5% and intra- and inter-day precisions, calculated as relative standard deviation (RSD), were better than 2.0%. The proposed CZE method presented advantageous performance characteristics and it can be considered suitable for the quality control of econazole nitrate cream formulations. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Rutin is employed as antioxidant and to prevent the capillary fragility and, when incorporated in cosmetic emulsions, it must target the action site. In vitro cutaneous penetration studies through human skin is the ideal situation, however, there are difficulties to obtain and to maintain this tissue viability. Among the membrane models, shed snake skin presents itself as pure stratum corneum, providing barrier function similar to human and it is obtained without the animal sacrifice. The objectives of this research were the development and stability evaluation of a cosmetic emulsion containing rutin and propylene glycol (penetration enhancer) and the evaluation or rutin in vitro cutaneous penetration and retention from the emulsion, employing an alternative model biomembrane. Emulsion was developed with rutin and propylene glycol, both at 5.0% w/w. Active substance presented on the formulation was quantified by a validated spectrophotometric method at 361.0 nm. Rutin Rutin cutaneous penetration and retention was performed in vertical diffusion cells with shed snake skin of Crotalus durissus, as alternative model biomembrane, and distilled water and ethanol 99.5% (1:1), as receptor fluid. The experiment was conducted for six hours, at 37.0 +/- 0.5 degrees C with constant stirring of 300 rpm. Spectrophotometry at 410.0 nm, previously validated, determined the active substance after cutaneous penetration/ retention. Emulsion did not promote rutin cutaneous penetration through C. durissus skin, retaining 0.931 +/- 0.0391 mu g rutin/mg shed snake skin. The referred formulation was chemically stable for 30 days after stored at 25.0 +/- 2.0 degrees C, 5.0 +/- 0.5 degrees C and 45.0 +/- 0.5 degrees C. In conclusion, it has not been verified the active cutaneous penetration through the model biomembrane, but only its retention on the Crotalus durissus stratum corneum, condition considered stable for 30 days.
Resumo:
Vecuronium bromide is a neuromuscular blocking agent used for anesthesia to induce skeletal muscle relaxation. HPLC and CZE analytical methods were developed and validated for the quantitative determination of vecuronium bromide. The HPLC method was achieved on an amino column (Luna 150 x 4.6 mm, 5 mu m) using UV detection at 205 nm. The mobile phase was composed of acetonitrile:water containing 25.0 mmol L(-1) of sodium phosphate monobasic (50:50 v/v), pH 4.6 and flow rate of 1.0 mL min(-1). The CZE method was achieved on an uncoated fused-silica capillary (40.0 cm total length, 31.5 cm effective length and 50 mu m i.d.) using indirect UV detection at 230 nm. The electrolyte comprised 1.0 mmol L(-1) of quinine sulfate dihydrate at pH 3.3 and 8.0% of acetonitrile. The results were used to compare both techniques. No significant differences were observed (p > 0.05).
Resumo:
Previous work demonstrated that a mixture of NH(4)Cl and KNO(3) as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH(4))(2)SO(4) plus NaNO(3), varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO(2) addition or not. A. platensis was cultivated in mini-tanks at 30 degrees C, 156 mu mol photons m(-2) s(-1), and starting cell concentration of 400 mg L(-1), on a modified Schlosser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L(-1), cell productivity of 179 mg L(-1) d(-1) and specific growth rate of 0.77 d(-1)) and satisfactory protein and lipid contents (around 30% each). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Carbon dioxide released from alcoholic fermentation accounts for 33% of the whole CO(2) involved in the use of ethanol as fuel derived from glucose. As Arthrospira platensis can uptake this greenhouse gas, this study evaluates the use of the CO(2) released from alcoholic fermentation for the production of Arthrospira platensis. For this purpose, this cyanobacterium was cultivated in continuous process using urea as nitrogen source, either using CO(2) from alcoholic fermentation, without any treatment, or using pure CO(2) from cylinder. The experiments were carried out at 120 mu mol photons m(-2) s(-1) in tubular photobioreactor at different dilution rates (0.2 <= D <= 0.8 d(-1)). Using CO(2) from alcoholic fermentation, maximum steady-state cell concentration (2661 +/- 71 mg L(-1)) was achieved at D 0.2 d(-1), whereas higher dilution rate (0.6 d(-1)) was needed to maximize cell productivity (839 mg L(-1) d(-1)). This value was 10% lower than the one obtained with pure CO(2), and there was no significant difference in the biomass protein content. With D 0.8 d(-1), it was possible to obtain 56% +/- 1.5% and 50% +/- 1.2% of protein in the dry biomass, using pure CO(2) and CO(2) from alcoholic fermentation, respectively. These results demonstrate that the use of such cost free CO(2) from alcoholic fermentation as carbon source, associated with low cost nitrogen source, may be a promising way to reduce costs of continuous cultivation of photosynthetic microorganisms, contributing at the same time to mitigate the greenhouse effect. (C) 2011 American Institute of Chemical Engineers Biotechnol. Prog., 27: 650-656, 2011
Resumo:
Semicontinuous cultures were carried out at different dilution rates (D) and light intensities (I) to determine the maximum productivity of Arthrospira platensis cultivated in helicoidal photobioreactor up to the achievement of pseudo-steady-state conditions. At I = 108 mu mol photons m(-2) s(-1), the semicontinuous regime ensured the highest values of maximum cell concentration (X(m) = 5772 +/- 113 mg L(-1)) and productivity (P(XS) = 1319 +/- 25 mg L(-1) d(-1)) at the lowest (D = 0.1 day(-1)) and the highest (D = 0.3 day(-1)) dilution rates, respectively. A kinetic model derived from that of Monod was proposed to determine the relationship between the product of light intensity to dilution rate (ID) and the cell productivity, which were shown to exert a combined influence on this parameter. This result put into evidence that pseudosteady-state conditions could be modified according to circumstances, conveniently varying one or other of the two independent variables. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Arthrospira platensis was cultivated in tubular photobioreactor using different photosynthetic photon flux densities (PPFD) and protocols of (NH(4))(2)SO(4) fed-hatch supply. Results were evaluated by variance analysis selecting maximum cell concentration (X(m)), cell productivity (P(x)), nitrogen-to-cell conversion factor (Y(X/N)) and biomass, protein and lipid contents as responses. At PPFD of 120 and 240 mu mol-photons/m(2) s, a parabolic profile of (NH(4))(2)SO(4) addition aiming at producing biomass with 7% nitrogen content ensured X(m) values (14.1 and 12.2 g/L, respectively) comparable to those obtained with NaNO(3). At PPFD of 240 mu mol-photons/m(2) s, P(x) (1.69 g/Ld) was 36% higher, although the photosynthetic efficiency (3.0%) was less than one-half that at PPFD of 120 mu mol-photons/m(2) s. Biomass was shown to be constituted by about 35% proteins and 10% lipids, without any dependence on PPFD or kind of nitrogen source. These results highlight the possible use of (NH(4))(2)SO(4) as alternative, cheap nitrogen source for A. platensis cultivation in tubular photobioreactors. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 26: 1271-1277, 2010
Resumo:
Arthospira (Spirulina) platensis (Nordstedt) Gomont was autotrophically cultivated for biomass production in repeated fed-batch process using urea as nitrogen source, with the aim of making large-scale production easier, increasing cell productivity and then reducing the production costs. It was investigated the influence or the ratio of renewed volume to total volume (R), the Urea feeding time (t(f)) and the number of successive repealed fed-batch cycles on the maximum cell concentration (X(m)), cell productivity (P(x)), nitrogen-to-cell conversion yield (Y(x/n)), maximum specific growth rate (mu(m)) and protein content of, dry biomass. The experimental results demonstrated chat R=0.80 and t(f) = 6d were the best cultivation conditions, being able to simultaneously ensure, throughout the three fed-batch cycles, the highest average values of three of the five responses (X(m) = 2101 +/- 113 mg L(-1), P(x) = 219 +/- 13 mg L(-1) d(-1) and Y(x/n) = 10.3 +/- 0.8,g g(-1)). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The behavior of S. platensis was investigated in this study through fed-batch pulse-feeding cultures performed at different carbon dioxide feeding rates (F = 0.44-1.03 g L-1 d(-1)) and photosynthetic photon flux density (PPFD = 80-250 mu mol photons m(-2) s(-1)) in a bench-scale helical photobioreactor. To achieve this purpose, an inorganic medium lacking the carbon source was enriched by gaseous carbon dioxide from a cylinder. The maximum cell concentration achieved was 12.8 g L-1 at PPFD = 166 mu mol photons m(-2) s(-1) and F= 0.44 g L-1 d(-1) of CO2. At PPFD = 80 and 125 mu mol photons m(-2) s(-1), the carbon utilization efficiency (CUE) reached maximum values of 50 and 69%, respectively, after about 20 days, and then it decreased, thus highlighting a photolimitation effect. At PPFD = 166 mu mol photons m(-2) s(-1), CUE was >= 90% between 20 and 50 days. The photosynthetic efficiency reached its maximum value (9.4%) at PPFD = 125 mu mol photons m(-2) s(-1). The photoinhibition threshold appeared to strongly depend on the feeding rate: at high PPFD, an increase in the amount of fed CO2 delayed the inhibitory effect on biomass growth, whereas at low PPFD, excess CO2 addition caused the microalga to stop growing. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Nisin is a commercially available bacteriocin produced by Lactococcus lactis ATCC 11454 and used as a natural agent in the biopreservation of food. In the current investigation, milk whey, a byproduct from dairy industries was used as a fermentation substrate for the production of nisin. Lactococcus lactis ATCC 11454 was developed in a rotary shaker (30 degrees C/36 h/100 rpm) using two different media with milk whey (i) without filtration, pH 6.8, adjusted with NaOH 2 mol L-1 and without pH adjustment, both autoclaved at 121 degrees C for 30 min, and (ii) filtrated (1.20 mu m and 0.22 mu m membrane filter). These cultures were transferred five times using 5 mL aliquots of broth culture for every new volume of the respective media. RESULTS: The results showed that culture media composed of milk whey without filtration supplied L. lactis its adaptation needs better than filtrated milk whey. Nisin titers, in milk whey without filtration (pH adjusted), was 11120.13 mg L-1 in the second transfer, and up to 1628-fold higher than the filtrated milk whey, 6.83 mg.L-1 obtained in the first(t) transfer. CONCLUSIONS: Biological processing of milk byproducts (milk whey) can be considered a profitable alternative, generating high-value bioproducts and contributing to decreasing river disposals by dairy industries. (C) 2008 Society of Chemical Industry.